Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Архитектура /

Записка к расчетам

←предыдущая следующая→  
1 2 



Скачать реферат


случае изгибающий момент на опоре воспринимается соединительными и бетоном, заполняющий полость между торцами ригелей и колонной.

Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота сечения ригеля

h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20; Rb=11.5 МПа.

gbr=0.9;

Арматура – класса А-III, Rs=365 МПа.

Вычисляем: αm=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195

По таблице 3.1[1] находим: η=0,89 и определяем площадь сечения соединительных стержней:

As=M/Rs*h0* η=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.

Принимаем: 2ø20 А-III с As=6.28*10-4 m2.

Длину сварных швов определяем следующим образом:

∑lm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,

где N=M/h0*η=94.96*103/0.89*0.485=220 кН.

Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов в случае перераспределение моментов вследствие пластических деформаций.

При двух стыковых стержнях и двусторонних швах длина каждого шва будет равна :

lw=∑lw/4+0.01=0.22/4+0.01=0.06 m.

Конструктивное требование: lw=5d=5*0.02=0.1 m.

Принимаем l=0.1m

Площадь закладной детали из условия работы на растяжение:

A=N/Rs=220*103/210*106=10.5*10-4 m2.

Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;

A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.

Длина стыковых стержней складывается из размера сечения колонны, двух зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.

4. Расчет внецентренно сжатой колонны.

4.1 Определение продольных сил от расчетных усилий.

Грузовая площадь средней колонны при сетке колонны 6х52, м равна Агр=6*5,2=31,2 м2.

Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66 кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого: Gперекр=138,72 кН.

Временная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qвр=4800*31,2*0,95=142,27 кН, в точности длительная: Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35 кН.

Постоянная нагрузка при весе кровли и плиты 4 КПа составляет: Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны: Qcol=6,86 кН;

Итого: Gпокр=141,08 кН.

Снеговая нагрузка для города Москвы – при коэффициентах надежности по нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5 кН, в точности длительная:

Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.

Продольная сила колонны I этажа от длительных нагрузок :

Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки N=(608.81+29.05+53.35)*103=691.21 кН.

4.2 Определение изгибающих моментов колонны от расчетных нагрузок.

Определяем максимальный момент колонн – при загружении 1+2 без перераспределения моментов. При действии длительных нагрузок:

М21=(α*g+β*φ)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.

N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.

При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= - 119,85 кН*м;

М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.

Разность абсолютных значений опорных моментов в узле рамы: при длительных нагрузках

∆Мl=(102.65-81.19)*103=21.46 кН*м;

∆М=(119,85-89,52)*103=30,33 кН*м.

Изгибающий момент колонны I этажа: М1l=0.6*∆Мl=0.6*21.46*103=12.88 кН*м; от полной нагрузки: М1=0,6*∆М=0,6*30,33*103=18,2 кН*м.

Вычисляем изгибающие моменты колонны, соответствующие максимальным продольным силам; для этого используем загружение пролетов ригеля по схеме 1.

От длительных нагрузок : ∆Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м;

Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м.

От полных нагрузок: ∆М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м; изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м.

4.3 Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа.

Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа.

Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от длительных нагрузок M1l=6.5 кН*м.

Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН, в точности Nl=608.81*103-88.92*103/2=564.35 кН.

4.4 Подбор сечений симметричной арматуры As= As’.

Приведем расчет по второй комбинаций усилий.

Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m.

Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m> случайного, его и принимаем для расчета статически неопределимой системы.

Находим значение моментов в сечении относительно оси, проходящий через ц.т. наименее сжатой (растянутой) арматуры.

При длительной нагрузки: : М1l=Мl+Nl(h/2-a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки: М1=18,2*103+620,1*103*0,085=70,91 кН*м.

Отношение l0/τ=4.2/0.0723=58.1>14

Расчетную длину многоэтажных зданий при жестком соединении ригеля с колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В нашем случае l0=l=4,2 м.

Для тяжелого бетона: φl=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение j=l0/h=0.029/0.25=0.116ζR.

2) αS= αn(e/h0-1+ αn/2)/1-S’=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0

j’=a’/h0=0.04/0.21=0.19.

3) ζ= αn(1- ζR)+2* αS* ζR /1- ζR+2* αS=(1.14*(1-0.6)+2*0.27*0.6)/1-0.6+2*0.27=0.83> ζR

Определяем площадь сечения арматуры:

As=As’=N/Rs*(e/h0- ζ*(1- ζ/2)/ αn)/1-j’=620.1*103/365*103*(0.13/0.21-0.83*(1-0.83)/1.14)/1-0.19=

=4.05*10-4 m2.

Принимаем 2ø18 А-III с As=5.09*10-4 m2.

Проверяем коэффициенты армирования: μ=2*As/A=2*5.09*10-4/0.252=0.0162*h0=2*0.265=0.53 m – принимаем с0=0,53 м. Тогда Qsw=qsw*c0=67.95*103*0.53=36.01 кН>Q=37.71 кН –удовлетворяется.

Проверка по сжатой наклонной полосе:

μw=Asw/b*S=0.392*10-4/0.2*0.15=0.0013;

αs=Es/Eb=170*109/23*109=7.4;

φw1=1+5* αs*μ=1+5*7.4*0.0013=1.05;

φb1=1-0.01*Rb=1-0.01*0.9*8.5=0.92;

Условия прочности:

Qmax=45.83 кН≤0.3* μb1*Rb*b*h0=0.3*1.05*0.92*0.9*8.5*106*0.2*0.265=117.5 кН – удовлетворяется.


←предыдущая следующая→  
1 2 



Copyright © 2005—2007 «Mark5»