Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Авиация и космонавтика /

Полные лекции по аэродинамике и динамике полета. Часть 1

←предыдущая  следующая→
1 2 3 



Скачать реферат


ВВЕДЕНИЕ

Теория полета (аэродинамика и динамика полета) – наука фундаменталь-ная и строгая, опирающаяся на математический аппарат. Но, как и о всякой науке, о ней можно говорить на кухне, опираясь лишь на интеллект соответ-ствующего уровня. К сожалению, и сегодня появляются "ученые", пытаю-щиеся на кухонном уровне объяснить основные законы природы, в том чис-ле и аэродинамики и динамики полета. Но когда с помощью этих объяснений пытались решить серьезные задачи в авиации, это приводило и приводит к плачевным результатам: после отрыва от Земли первые самолеты "вдруг" круто пикировали в Землю; при большой скорости на самолетах с первыми турбореактивными двигателями (ТРД) "вдруг" появлялась тряска и самолет рассыпался; преодоление звукового барьера долго не давалось; перегружен-ные самолеты не могут завершить взлет и т.п.

Поэтому мы с Вами будем изучать науку на уровне высшего образования. А для этого придется хорошо вспомнить математику, теоретическую меха-нику и математическое моделирование.

Человек очень давно хотел летать, как птица – пытался это делать, но без-успешно. И только Ньютон смог четко выделить факторы, определяющие возможность полета тела, тяжелее воздуха.

Давайте повторим эти рассуждения Ньютона. С одной стороны, птицы тяжелее воздуха, но летают! С другой стороны, по своему опыту мы знаем, что шарообразное тяжелое тело без посторонних внешних сил подняться в воздух не может. А почему простейшая модель птицы – воздушный змей взмывает в воздух?

Для того чтобы змей полетел, необходимо наличие следующих факторов: плотность среды (на Луне змей не полетит), скорость (ветра или бегуна) и специальная геометрия тела (угол атаки, создаваемый специально подоб-ранными веревочками). Эти феноменологические рассуждения необходимо облечь в форму строгой теории (модели), с помощью которой можно было бы проводить расчет полета любого летательного аппарата (ЛА) в любых ус-ловиях. Ведь при создании Ил-96 никто не прыгал с прототипом его крыла с колокольни, чтобы убедиться в возможности полета!

1. КИНЕМАТИКА СПЛОШНОЙ СРЕДЫ

1.1. Основные гипотезы механики сплошной среды

Прежде всего, займемся изучением среды. Для ее описания необходимы полные и непротиворечивые модели движения газообразных, жидких и твердых деформируемых тел, основанные на методах теоретической меха-ники и некоторых дополнительных гипотезах. Согласованная система таких моделей носит название механики сплошной среды.

Все тела состоят из множества отдельных элементарных частиц, взаимо-действующих сложным образом в электромагнитном и гравитационном по-лях. Существуют предположения и о других, пока неизвестных полях. По-этому изучение материальных тел как совокупности элементарных частиц требует введения дополнительных гипотез об их свойствах и взаимодействи-ях. Кроме того, для решения уравнений динамики необходимо знать началь-ные условия, т.е. координаты и скорости всех частиц, что принципиально невозможно. Однако для решения практических задач совсем не обязательно знать движение каждой частицы – достаточно определить некоторые осред-ненные характеристики. Такой научный подход применяется на основе веро-ятностного описания и использования законов распределения и называется статистическим.

Механика сплошной среды использует другой подход – феноменологиче-ский, основанный на эмпирических гипотезах, подтвержденных человече-ским опытом [1].

1) Гипотеза сплошности, предложенная Бернулли, постулирует тело как непрерывную среду, заполняющую некоторый объем, и необходима для применения математического аппарата дифференциального и интегрального исчисления.¬¬

2) Гипотезу непрерывности метрического пространства, тесно связан-ную с предыдущей, вводят для определения координат и расстояний.

3) Следующая гипотеза предполагает возможность введения единой для всех точек пространства декартовой системы координат. Напомним, что в декартовой системе координат каждая точка пространства имеет свои дейст-вительные координаты. Эта гипотеза позволяет применять аппарат аналити-ческой геометрии.

4) В механике сплошной среды постулируется абсолютность времени для всех систем отсчета, т.е. не учитываются эффекты теории относительности.

Эти гипотезы естественны с точки зрения человеческого опыта и вполне оправданы при исследовании явлений, происходящих в не слишком больших и не слишком малых объемах с небольшими скоростями – в макромире. Ис-ходя из них, строятся все последующие положения и выводы теории.

1.2. Термины механики сплошной среды

Скорость будем рассматривать как поле вектора в каждой точке про-странства, задаваемой радиус-вектором этой точки с координатами x, y, z, в каждый момент времени t:

(1.1)

или по координатам:

(1.2)

Очевидный смысл этих уравнений заключается в том, что скорость опреде-ляется, как производная по времени от функции местоположения частицы cреды (x,y,z,t).

Уравнения (1.1) или (1.2), задающие положение (x,y,z,t) частицы в про-странстве в каждый момент времени как решение дифференциального урав-нения, можно рассматривать как траекторию ее движения.

Если поле вектора скорости сплошной среды не зависит от времени в каждой точке пространства, то движение называется стационар-ным или установившимся. В общем случае и движение называ-ется нестационарным или неустановившимся.

Линиями тока в механике сплошной среды называются линии, которые в каждый фиксированный момент времени имеют в каждой своей точке ка-сательные, совпадающие с вектором скорости. Таким образом, частицы сре-ды, попавшие на линию тока, не имеют составляющей скорости поперек нее и не могут ее пересечь. Линии тока необходимы для получения в теории ма-тематически строгих выводов. На практике линии тока в прозрачной жидко-сти с взвешенными частицами нерастворимой краски можно зафиксировать фотографированием с маленькой выдержкой – короткие следы этих частиц, сливаясь, вырисовывают линии тока. Уравнение линии тока в момент време-ни t запишется в терминах аналитической геометрии, как условие коллине-арности векторов:

. (1.3)

Таким образом, картина линий тока в нестационарном движении все время меняется. При установившемся движении отсутствие в уравнении (1.3) вре-мени t приводит к совпадению линий тока с траекториями частиц.

Трубчатая поверхность, образованная линиями тока, проходящими через некоторую замкнутую кривую, называется трубкой тока. Частицы сплош-ной среды не пересекают стенок трубки тока, не имея нормальных к ним со-ставляющих скорости.

Если компоненты вектора скорости не обращаются в нуль и вместе со своими первыми производными однозначны и не имеют разрывов, то реше-ние уравнения (1.3) существует и единственно. В противоположном случае существование или единственность может нарушаться, т.е. в некоторых точ-ках пространства линии тока могут ветвиться или вырождаться в точку. Та-кие точки называются особыми или критическими.

Напомним некоторые математические термины [4] применительно к ско-рости, заданной в пространстве – полю скоростей.

Вектором будем обозначать поверхность с указанным направлением нормали , выражающимся через единичные векторы осей координат: , а скаляром S – только площадь этой поверхности.

Потоком скорости через поверхность с заданным вектором нормали называется поверхностный интеграл

(1.4)

где Vn обозначает проекцию скорости на единичный вектор нормали к по-верхности .

Градиентом называется векторная функция скаляра:

. (1.5)

Ротор скорости (вихрь) определяется формулой:

, (1.6)

а дивергенция скорости:

. (1.7)

Циркуляцией скорости по замкнутому контуру L с определенным направле-нием обхода называется криволинейный интеграл:

. (1.8)

Известные теоремы векторных полей [4] применимы и к полю скоростей. Теорема Стокса:

(1.9)

справедлива при ориентации обхода контура L и нормали к натянутой на не-го поверхности по правилу правого винта, а теорема Остроградского-Гаусса:

(1.10)

при условии, что замкнутая поверхность ограничивает объем W.

Полную производную по времени от скаляра A( ,t) можно определить по известной [4] формуле:

(1.11)

Производную от интеграла по произвольному подвижно-му объему W, где от t зависит не только подынтегральная функция, но и объ-ем, вычислим с помощью определения производной:

В последнем пределе W'–W образуется сдвигом элементарных площадок dS поверхности S, ограничивающей W, на расстояние VndS. Кроме того, при t  0: f( ,t+t)  f( ,t) и деформированная поверхность S  S, поэтому пре-дел принимает значение (сравните с (1.4)) или по теореме Остроградского-Гаусса (1.10). Откуда в силу уравнения (1.11):

(1.12)

Вектор  0 тоже можно рассматривать, как поле вектора ротора скорости ( ,t) – вихревое поле. Непосредственной проверкой легко убедиться, что всегда div = 0. Отсюда по теореме Остроградского-Гаусса следует, что поток ротора скорости сквозь любую замкнутую поверх-ность равен нулю:

. (1.13)

В вихревом поле по аналогии с полем скоростей выделяют вихревую ли-нию:

(1.14)

и вихревую трубку. Так как через боковую поверхность вихревой трубки по определению нет потока ротора скорости, то из (1.13) вытекает постоянство такого потока через любое ее поперечное сечение

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»