Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Безопасность жизнедеятельности /

Ядерные реакторы

←предыдущая  следующая→
1 2 3 4 



Скачать реферат


Комсомольск-на-Амуре

KOST

&

AKRED

COST@AMURNET.RU

ПЛАН

1.Введение.

2.Общее устройство электростанции.

3.Немного ядерной физики.

4. Ядерный реактор.

5. Устройство различных типов ядерных реакторов.

6.Сравнение.

7. Факторы опасности ядерных реакторов.

8. Заключение.

Список литературы

1.Введение.

Опасна ли ядерная энергетика? Этим вопросом особенно часто стали задаваться в последнее время, особенно после аварий на атомных электростанциях Тримайл-Айленд и Чернобыльской АЭС. И если опасность все же имеется, то каким образом можно уменьшить риск неприятных последствий аварии? И где же причина того или иного фактора опасности? Ответу на эти вопросы и посвящена данная работа.

В данном докладе будут освещены основные вопросы устройства и работы атомных электростанций и ядерных реакторов, проведена сравнительная характеристика различных типов ядерных реакторов, разъяснены причины их опасности.

2.Общее устройство электростанции.

Все аппараты для преобразования различных видов энергии в электрическую - электростанции можно условно разделить на следующие виды:

• Тепловые электростанции - они преобразуют различные виды энергии в энергию нагретого теплоносителя (в основном воды), который, в свою очередь, передает свою энергию на турбину, вырабатывающую электрический ток. К этому виду относятся угольные, газовые, атомные электростанции, электростанции, работающие на нефти и ее производных, некоторые виды солнечных.

• Гидроэлектростанции - преобразовывают энергию движущейся воды в электричество, передавая ее непосредственно на турбину. К ним относятся гидроэлектростанции и приливные электростанции.

• Электростанции, непосредственно вырабатывающие электричество - солнечные на фотоэлементах, ветряные.

Принципиальная схема тепловой электростанции представлена на рис.1. Стоит иметь в виду, что в ее конструкции может быть предусмотрено несколько контуров - теплоноситель от тепловыделяющего реактора может не идти сразу на турбину, а отдать свое тепло в теплообменнике теплоносителю следующего контура, который уже может поступать на турбину, а может дальше передавать свою энергию следующему контуру. Также в любой электростанции предусмотрена система охлаждения отработавшего теплоносителя, чтобы довести температуру теплоносителя до необходимого для повторного цикла значения. Если поблизости от электростанции есть населенный пункт, то это достигается путем использования тепла отработавшего теплоносителя для нагрева воды для отопления домов или горячего водоснабжения, а если нет, то излишнее тепло отработавшего теплоносителя просто сбрасывается в атмосферу в градирнях (их можно видеть на рисунке обложки: из себя они представляют широкие конусообразные трубы). Конденсатором отработавшего пара на неатомных электростанциях чаще всего служат именно градирни.

Рис.1

Атомные электростанции относятся к тепловым, так как в их устройстве имеются тепловыделители, теплоноситель и генератор электрического тока - турбина. Существуют как одноконтурные АЭС, так и двух-трех-контурные (это зависит от типа ядерного реактора).

3.Немного ядерной физики.

Для лучшего уяснения принципов работы ядерного реактора и смысла процессов, происходящих в нем, вкратце изложим основные моменты физики реакторов.

• Ядерный реактор - аппарат, в котором происходят ядерные реакции - превращения одних химических элементов в другие. Для этих реакций необходимо наличие в реакторе делящегося вещества, которое при своем распаде выделяет элементарные частицы, способные вызвать распад других ядер.

• Деление атомного ядра может произойти самопроизвольно или при попадании в него элементарной частицы. Самопроизвольный распад в ядерной энергетике не используется из-за очень низкой его интенсивности.

• В качестве делящегося вещества в настоящее время могут использоваться изотопы урана — уран-235 и уран-238, а также плутоний-239.

• В ядерном реакторе происходит цепная реакция. Ядра урана или плутония распадаются, при этом образуются два-три ядра элементов середины таблицы Менделеева, выделяется энергия, излучаются гамма-кванты и образуются два или три нейтрона, которые, в свою очередь, могут прореагировать с другими атомами и, вызвав их деление, продолжить цепную реакцию. Для распада какого-либо атомного ядра необходимо попадание в него элементарной частицы с определенной энергией (величина этой энергии должна лежать в определенном диапазоне: более медленная или более быстрая частица просто оттолкнется от ядра, не проникнув в него). Наибольшее значение в ядерной энергетике имеют нейтроны.

• В зависимости от скорости элементарной частицы выделяют два вида нейтронов: быстрые и медленные. Нейтроны разных видов по-разному влияют на ядра делящихся элементов.

• Уран-238 делится только быстрыми нейтронами. При его делении выделяется энергия и образуется 2-3 быстрых нейтрона. Вследствие того, что эти быстрые нейтроны замедляются в веществе урана-238 до скоростей, неспособных вызвать деление ядра урана-238, цепная реакция в уране-238 протекать не может.

• Поскольку в естественном уране основной изотоп - уран-238, то цепная реакция в естественном уране протекать не может.

• В уране-235 цепная реакция протекать может, так как наиболее эффективно его деление происходит, когда нейтроны замедлены в 3-4 раза по сравнению с быстрыми, что происходит при достаточно длинном их пробеге в толще урана без риска быть поглощенными посторонними веществами или при прохождении через вещество, обладающее свойством замедлять нейтроны, не поглощая их.

• Поскольку в естественном уране имеется достаточно большое количество веществ, поглощающих нейтроны (тот же уран-238, который при этом превращается в другой делящийся изотоп - плутоний-239), то в современных ядерных реакторах необходимо для замедления нейтронов применять не сам уран, а другие вещества, мало поглощающие нейтроны (например, графит или тяжелая вода).

• Обыкновенная вода нейтроны замедляет очень хорошо, но сильно их поглощает. Поэтому для нормального протекания цепной реакции при использовании в качестве замедлителя обыкновенной легкой воды необходимо использовать уран с высокой долей делящегося изотопа - урана-235 (обогащенный уран). Обогащенный уран производят по достаточно сложной и трудоемкой технологии на горнообогатительных комбинатах, при этом образуются токсичные и радиоактивные отходы.

• Графит хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании графита в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды.

• Тяжелая вода очень хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании тяжелой воды в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды. Но производство тяжелой воды очень трудоемко и экологически опасно.

• При попадании медленного нейтрона в ядро урана-235 он может быть захвачен этим ядром. При этом произойдет ряд ядерных реакций, итогом которых станет образование ядра плутония-239. (Плутоний-239 в принципе может тоже использоваться для нужд ядерной энергетики, но в настоящее время он является одним из основных компонентов начинки атомных бомб.) Поэтому ядерное топливо в реакторе не только расходуется, но и нарабатывается. У некоторых ядерных реакторов основной задачей является как раз такая наработка.

• Другим способом решить проблему необходимости замедления нейтронов является создание реакторов без необходимости их замедлять - реакторов на быстрых нейтронах. В таком реакторе основным делящимся веществом является не уран, а плутоний. Уран же (используется уран-238) выступает как дополнительный компонент реакции - от быстрого нейтрона, выпущенного при распаде ядра плутония, произойдет распад ядра урана с выделением энергии и испусканием других нейтронов, а при попадании в ядро урана замедлившегося нейтрона он превратится в плутоний-239, возобновляя тем самым запасы ядерного топлива в реакторе. В связи с малой величиной поглощения нейтронов плутонием цепная реакция в сплаве плутония и урана-238 идти будет, причем в ней будет образовываться большое количество нейтронов.

• Таким образом, в ядерном реакторе должен использоваться либо обогащенный уран с замедлителем, поглощающем нейтроны, либо необогащенный уран с замедлителем, мало поглощающем нейтроны, либо сплав плутония с ураном без замедлителя. О различных типах ядерных реакторов, реализующих эти три возможности разными способами, будет говориться дальше.

4. Ядерный реактор.

Как уже указывалось, тремя обязательными элементами для реакторов на тепловых нейтронах являются тепловыделитель, замедлитель и теплоноситель. На данном рисунке представлена типичная схема активной зоны.

Через реактор с помощью насосов (обычно называемых циркуляционными) прокачивается теплоноситель, поступающий потом или на турбину (в РБМК) или в теплообменник (в остальных типах реакторов). Нагретый теплоноситель теплообменника поступает на турбину, где теряет часть своей энергии на выработку электричества. Из турбины теплоноситель поступает в конденсатор для пара, чтобы в реактор поступал теплоноситель с нужными для оптимальной работы

←предыдущая  следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»