Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Геология /

Нефтегазоносность карбонатных пород

←предыдущая следующая→
1 2 3 4 5 6 7 



Скачать реферат


глубине.

Под нагрузкой вышележащих толщ горные породы находятся в сос-тоянии объемного сжатия, что препятсявует раскрытию литогенетических и тектонических трещин. Раскрытие существующих трещин и образова-ние новых происходит в результате различных геологических процессов, которые освобождают горные породы от напряжения. Явление разгрузкии выступает в качестве одного из важнейших факторов трещинной водопро-ницаемости. В этих условиях породы получают возможность расширения, что приводит, с одной стороны, к раскрытию уже имеющихся литогене-тических и тектонических трещин, с другой, - к образованию трещин разгрузки.

Трещины выветривания широко распространены и неизменно вы-деляются в особую генетическую группу. Процессы выветривания сущес-твенным образом изменяют трещинную водопроницаемость, однако в отличие от явления разгрузки влияние выветривания может быть различ-ным по знаку: в результате трещинная водопроницаемость то повышается, то снижается при преобладании химического воздействия.

5. Влияние постседиментационных процессов

на формирование пустотного пространства.

На формирование структуры порового пространства карбонатных пород оказывают влияние как первичные условия седиментации, так и последующие вторичные процессы, интенсивность и направленность воздействия которых в каждом регионе различны. Седиментационные процессы накопления и уплотнения влияют на характер и свойства порового пространства осадков, а затем и пород. Именно в этот период создаются благоприятные или неблагоприятные условия для движения флюидов через породы.

Интенсивная перекристаллизация карбонатных пород происходит в эпигенезе под влиянием циркуляции подземных вод в условиях, обычно благоприятных для новообразования крупнозернистого кальцита непра-вильных очертаний. Большое влияние на перекристаллизацию карбонат-ных пород, как установлено Г. А. Каледой ( 1955 ), Л. П. Гмид ( 1962 ), М. Х. Булач ( 1964 ), Я. Н, Перьковой ( 1966 ), оказывают имеющиеся в них примеся глинистого, глинисто - органического, кремнистого и сульфат-ного веществ. Эти примеси не только замедляют перекристаллизацию. За-полняя пустоты, поры и трещины, они меняют петрофизические свойства карбонатных пород. На более поздних этапах литогенеза ( Гмид, 1965 ) некоторые примеси придают породам твердость, хрупкость и они более подвержены образованию трещин. В целом такие процессы, как кальцитизация, сульфатизация, окремнение, т. е. процессы метасоматического замещения карбонатов другими минеральными веществами, способствуют заполнению пор, полостей и трещин и отрицательно влияют на коллекторские свойства.

Доломитизация - процесс замещения кальцита, ангидрита и других минералов доломитом и заполнение им пор, каверен и трещин. Различают доломитизацию диагенетическую, происходящую в осадке, и эпигенети-ческую, развивающуюся в породе.

Избирательный характер процессов растворения, сопровождающих доломитизацию, определяется большим числом факторов: составом и кон-центрацией поровых растворов, размерами и однородностью кристаллов, наличием примесей, температурой, давлением. Если учесть изменчивость и непостоянство во времени и пространстве всех этих факторов, то нерав-номерность, прихотливость в распространении пористо - кавернозных разностей диагенетических доломитов станет очевидной.

Дедоломитизация ( раздоломитизация ) происходит на стадии эпиге-неза и заключается в метасоматическом замещении доломита кальцитом; она также неоднозначно сказывается на изменении коллекторских свойств. К эпигенетическим процессам следует отнести формирование сутуро - стилолитовых текстур. Обычно они заполнены глинистым, битум-ным веществом, карбонатами, сульфатами и др. Нередко по стилитовым швам проходят открытые секущие трещины, частично заполненные би-тумом, и в них отмечаются порообразные расширения. Встречаются сти-лолиты горизонтальные, перпендикулярные и расположенные под углом. Они очень важны, так как служат доказательством перемещения флюидов, а также, будучи открытыми, представляют собой дополнительную емкость.

Значение перечисленных постседиментационных преобразований для формирования пустотного пространства карбонатных попрод может измениться в результате действия процессов растворения и выноса части растворимого вещества. В зависимости от химического состава подземных вод, скорости их движения, температуры, давления и литологического состава карбонатных пород меняются интенсивность растворения пород и образования пустот выщелачивания.

Глава IV. Оценочно - генетическая классификация.

В классификационной схеме все породы - коллекторы подразделены на группы А, Б, В, которые объединяют семь классов коллекторов, отлича-ющихся друг от друга оценочными параметрами, литологическими и структурными особенностями. Группы А и Б в основном представлены коллекторами порового и каверно - порового типов; группа В - коллекто-рами смешанного и трещинного типов.

Породы - коллекторы, выделенные в группы А, Б, В, различаются не только по тексстурно - структурным особеностям, но и по времени форми-рования пустотного пространства. Так, в породах группы А развит в ос-новном седиментационные поры, размеры которых увеличены за счет вто-ричных процессов выщелачивания, иногда до размеров каверен. Существенного генетического различия между порами и кавернами нет, также однозначно влияние их на коллекторские свойства. Следовательно, к этой группе коллекторов относятся и коллекторы каверно - порового типа. Важно, что и проницаемость и емкость определяются поровыми каналами различного размера.

В породах группы Б развиты седиментационные и реликтово - седи-ментационные поровые каналы, но размеры их резко сокращены, и мень-шую роль в поровом пространстве играют пустоты выщелачивания. Ос-новное отличие пород этой группы от пород группы А заключается в боль-шей сложности процессов строения порового пространства, что обуслов-лено действием вторичных процессов.

Карбонатные породы группы В отличаются наиболее сложным ха-рактером порового пространства. Развиты мелкие поровые каналы, кото-рые обладают извилистостью, плохой сообщаемостью. Характерны изо-лированные пустоты выщелачивания ( каверны ) и трещины различной ориентировки.

Группа А представлена в основном карбонатами органогенного и обломочного происхождения, отличающимися рыхлой упаковкой фраг-мента и различными размерами и окатанностью обломков. Цемент содер-жится в небольшом количестве ( до 10 % ), образует крустификационные корочки и регенерационные оболочки вокруг детрита, редко заполняет поры, представлен новообразованными кристаллами кальцита.

Группа А содержит два класса пород: проницаемостью от 300 до 500 мД и проницаемостью 500 мД и выше. Содержание связанной воды в них незначительно ( от 5 до 20 %), I и II классы отличаются высокой полезной емкостью и высокими фильтрующими свойствами. Коэффициент газонасыщенности пород I и II классов высокий - 0, 95 - 0, 8. Тип коллектора каверно - поровый и поровый.

Группа Б представлена сильно измененными породами органогенно-го и обломочного происхождения, а также мелко - и среднезернистыми разностями хемогенного генезиса. Органогенные и органогенно - обло-мочные карбонаты характеризуются различной степенью цементации ( це-мента 15 - 20 % и более ), неодинаковой интенсивностью перекристаллиза-ции ( от слабо до сильно перекристаллизованных ) и различной плотнос-тью упаковки фрагментов.

Породы этой группы отличаются значительной вторичной кальтиза-цией, интенсивность которой определяет сложное строение порового про-странства: морфологию, размеры и форму поровых каналов, а также ха-рактер их взаимосвязи. Наличие поровых каналов и преобладание узких, сильно извилистых обуславливает снижение проницаемости этих пород от 300 до 10 мД. Постепенное усложнение структуры порового пространства ( большое число мелких пор, сильная извилистость и шероховатость поровых каналов и др. ) послужило причиной неодинакового влияния связанной воды на изменение эффективных параметров - емкости и проницаемости. Именнно для коллекторов группы Б характерна обратная линейная связь между остаточной водонасыщенностью и проницаемостью. Они отличаются средней полезной емкостью и средними фильтрационными свойствами. Коэффициент газонасыщенности коллекторов III класса 0, 88 - 0, 78, IV класса ) 0, 84 -), 7; V класса 0,8 - 0, 62. Тип коллектора в основном поровый, но V класс может быть представлен трещинно - поровым коллектором.

Группа В представлено главным образом породами хемогенного и биохемогенного происхождения, а также сильно перекристаллизованны-ми, измененными постседиментационными процессами, органогенными породами, в которых форменные элементы практически не различимы. Это очень плотные, мало проницаемые и чаще всего низко пористые породы.

Поровое пространство хемогенных и биохемогенных пород крайне неоднородно и сложно по строению: морфология, размеры пор, форма вза-имосвязи их определяются интенсивностью вторичных процессов. Поры отличаются округлой, иногда неправильной формой, располагаются между кристаллами или секут их. Соединение пор друг с другом осуществляется по межкристаллическим канальцам, ширина и степень извилистости ко-торых зависят от размера кристаллов цемента. Чем меньше кристаллы, тем тоньше зазоры между ними, а следовательно, более узки и извилисты ка-налы, соединяющие поры. Мелкие поры соединяются друг с другом по тончайшим ( менее 5 - 10 мкм ) каналам, которые прослеживаются между кристаллами в основной микротонкозернистой массе карбоната. Сообщаемость поровых каналов затруднена, часто они изолированы, что определяет их низкие фильтрационные свойства.

←предыдущая следующая→
1 2 3 4 5 6 7 



Copyright © 2005—2007 «Mark5»