Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Коммуникации и связь /

Интерфейсы АТМ

←предыдущая следующая→
1 2 3 4 5 6 7 



Скачать реферат


избыточный код, который вычисляется по всем полям АТМ - заголовка. Такой метод контроля ошибок позволяет выявить все одноразрядные ошибки и часть много разрядных. Контроль ошибок в работе АТМ имеет очень большое значение, поскольку ошибка в VPI/VCI может вызвать искажение данных в других виртуальных каналах.

Виртуальные каналы.

Виртуальный канал ATM - это соединение между двумя конечными станциями ATM, которое устанавливается на время их взаимодействия. Виртуальный канал является двунаправленным; это означает, что после установления соединения каждая конечная станция может как посылать пакеты другой станции, так и получать их от нее.

Имеются три типа виртуальных каналов:

постоянные виртуальные каналы (PVC - Permanent Virtual Circuits);

коммутируемые виртуальные каналы (SVC - Switched Virtual Circuits);

интеллектуальные постоянные виртуальные каналы (SPVC - Smart Permanent Virtual Circuits).

PVC - это постоянное соединение между двумя конечными станциями, которое устанавливается вручную в процессе конфигурирования сети. Пользователь сообщает провайдеру ATM-услуг или сетевому администратору, какие конечные станции должны быть соединены, и он устанавливает PVC между этими конечными станциями.

PVC включает в себя конечные станции, среду передачи и все коммутаторы, расположенные между конечными станциями. После установки PVC для него резервируется определенная часть полосы пропускания, и двум конечным станциям не требуется устанавливать или сбрасывать соединение.

SVC устанавливается по мере необходимости - всякий раз, когда конечная станция пытается передать данные другой конечной станции. Когда отправляющая станция запрашивает соединение, сеть ATM распространяет адресные таблицы и сообщает этой станции, какие VCI и VPI должны быть включены в заголовки ячеек. Через произвольный промежуток времени SVC сбрасывается.

SVC устанавливается динамически, а не вручную. Для него стандарты передачи сигналов уровня ATM определяют, как конечная станция должна устанавливать, поддерживать и сбрасывать соединение. Эти стандарты также регламентируют использование конечной станцией при установлении соединения параметров QoS из уровня адаптации ATM.

Кроме того, стандарты передачи сигналов описывают способ управления трафиком и предотвращения "заторов": соединение устанавливается только в том случае, если сеть в состоянии поддерживать это соединение. Процесс определения, может ли быть установлено соединение, называется управлением признанием соединения (CAC - Connection Admission Control).

SPVC - это гибрид PVC и SVC. Подобно PVC, SPVC устанавливается вручную на этапе конфигурирования сети. Однако провайдер ATM-услуг или сетевой администратор задает только конечные станции. Для каждой передачи сеть определяет, через какие коммутаторы будут передаваться ячейки.

Большая часть раннего оборудования ATM поддерживала только PVC. Поддержка SVC и SPVC начинает реализовываться только сейчас.

PVC имеют два преимущества над SVC. Сеть, в которой используются SVC, должна тратить время на установление соединений, а PVC устанавливаются предварительно, поэтому могут обеспечить более высокую производительность. Кроме того, PVC обеспечивают лучший контроль над сетью, так как провайдер ATM-услуг или сетевой администратор может выбирать путь, по которому будут передаваться ячейки.

Однако и SVC имеют ряд преимуществ перед PVC. Поскольку SVC устанавливается и сбрасывается легче, чем PVC, то сети, использующие SVC, могут имитировать сети без установления соединений. Эта возможность оказывается полезной в том случае, если вы используете приложение, которое не может работать в сети с установлением соединений. Кроме того, SVC используют полосу пропускания, только когда это необходимо, а PVC должны постоянно ее резервировать на тот случай, если она понадобится. SVC также требуют меньшей административной работы, поскольку устанавливаются автоматически, а не вручную. И наконец, SVC обеспечивают отказоустойчивость: когда выходит из строя коммутатор, находящийся на пути соединения, другие коммутаторы выбирают альтернативный путь.

В некотором смысле SPVC обладает лучшими свойствами этих двух видов виртуальных каналов. Как и в случае с PVC, SPVC позволяет заранее задать конечные станции, поэтому им не приходится тратить время на установление соединения каждый раз, когда одна из них должна передать ячейки. Подобно SVC, SPVC обеспечивает отказоустойчивость. Однако и SPVC имеет свои недостатки: как и PVC, SPVC устанавливается вручную, и для него необходимо резервировать часть полосы пропускания - даже если он не используется.

Виртуальные пути.

Стандарты установления соединения для уровня ATM также определяют виртуальные пути (Virtual Path). В то время как виртуальный канал - это соединение, установленное между двумя конечными станциями на время их взаимодействия, виртуальный путь - это путь между двумя коммутаторами, который существует постоянно, независимо от того, установлено ли соединение. Другими словами, виртуальный путь - это "запомненный" путь, по которому проходит весь трафик от одного коммутатора к другому.

Когда пользователь запрашивает виртуальный канал, коммутаторы определяют, какой виртуальный путь использовать для достижения конечных станций. По одному и тому же виртуальному пути в одно и то же время может передаваться трафик более чем для одного виртуального канала. Например, виртуальный путь с полосой пропускания 120 Мбит/с может быть разделен на четыре одновременных соединения по 30 Мбит/с каждый.

Стандарты Модели ATM.

ATM Forum разработал много стандартов, основанных на модели ATM, в том числе следующие:

User-to-Network Interface (UNI - интерфейс "пользователь-сеть") определяет интерфейс между конечной станцией и коммутатором;

Private Network-to-Network Interface (PNNI - частный интерфейс "сеть-сеть") определяет интерфейс между коммутаторами.

Эти стандарты определяют, как рабочие станции и коммутаторы взаимодействуют в сети ATM.

Стандарты UNI, разработанные ATM Forum, определяют, каким образом устройства взаимодействуют с коммутатором. На рисунке 5 показано, как пакет передается с рабочей станции коммутатору. Сначала пользователь посылает данные, например аудио-, видеоинформацию и т.д. В соответствии с типом данных какой-либо из четырех протоколов AAL получает эти данные и разбивает их на ячейки. Затем ячейки передаются на уровень ATM, который добавляет к ним информацию, необходимую для маршрутизации. Потом ячейки передаются на физический уровень, разбивающий их на биты и посылающий через среду передачи коммутатору.

Рис 5.Взаимодействие рабочей станции АТМ с коммутатором.

Интерфейсы сетей АТМ.

Обратим свое внимание на рис.6, на котором изображено несколько различных сетей АТМ частных и публичных и интерфейсы сетей АТМ с действующими на них стандартами UNI (User-to-Network Interface), PNNI (Private Network-to-Network Inteface) и B-ICI (B-ISDN Inter-Carrier Interface).

Как видно из этого рисунка PNNI действует либо внутри частной или публичной сети между АТМ-коммутаторами этой сети, либо между двумя частными сетями. Абревиатура PNNI в соответствии с этим имеет два значения: интерфейс между частными сетями (Private Network-to-Network Inteface) или интерфейс между АТМ-коммутаторами в частной сети (Private Network Node Interface).

Для получения полной картины интерфейсов или протоколов в сетях АТМ необходимо отметить, что между конкретным АТМ-коммутатором и частной или публичной сетью АТМ действуют, соответственно, стандарты Private или Public User-to-Network Interface (Private/Public UNI). Стандарт Public UNI действует также между частной и публичной сетями АТМ.

Кроме того, между двумя публичными сетями действует стандарт B-ICI (B-ISDN Inter-Carrier Interface).

На самом деле три стандарта UNI, PNNI и B-ICI очень тесно связаны друг с другом, более того, некоторые функции этих протоколов перекрываются между собой, и это приводит к тому что границы между ними в силу функциональной близости этих стандартов стираются.

Рассматривая все по порядку, начнем со стандарта B-ICI, который работает между публичными сетями.

Рис. 6 B-ICI.

B-ICI

B-ISND Public Carrier to Public Carrier Interface

Назначение данного стандарта заключается в обеспечении возможности предоставления услуг АТМ через национальные и международные сети АТМ. Разрабатывается этот стандарт рабочей группой B-ICI АТМ Форума.

Первая версия (v.1.1) стандарта увидела свет в сентябре 1994 года и описывала услуги, базирующиеся на постоянных виртуальных соединениях PVC.

Вторая версия (v.2.0) была принята в декабре 1995 года и включала в себя уже и предоставление услуг АТМ не только на базе PVC, но и на базе коммутируемых виртуальных соединениях SVC.

Последняя версия стандарта B-ICI, принятая АТМ Форумом, имеет номер 2.1 и принята она в ноябре 1996 года. Эта версия включает в себя дополнение по переменной скорости передачи (VBR - Variable Bit Rate) и некоторые другие функции, касающиеся поддержки адресации АТМ.

Для стандарта B-ICI характерны следующие особенности:

возможность поддержки функций ATM UNI

возможность поддержки межсетевого взаимодействия с другими сетями, такими как Frame Relay, SMDS и низкоскоростные сети

высокая надежность, дающая возможность использования B-ICI для работы в публичных сетях.

Таким образом, B-ICI поддерживает функциональные

←предыдущая следующая→
1 2 3 4 5 6 7 



Copyright © 2005—2007 «Mark5»