Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Металлургия /

Металловедение

←предыдущая следующая→
1 2 3 4 



Скачать реферат


состояния в жидкое может произойти только выше температуры Ts; это явление называется перенагрева¬нием.

Величиной или степенью переохлаждения называют разность между теоретической и фактической температурами кристаллизации.

Процесс перехода металла из жидкого состояния в кристалличе¬ское можно изобразить кривыми в координатах время — темпера¬тура (рис. 3).

Охлаждение металла в жидком состоянии сопровождается плав¬ным понижением температуры и может быть названо простым охлаж¬дением, так как при этом нет качественного изменения состояния.

При достижении температуры кристаллизации на кривой тем¬пература — время появляется горизонтальная площадка (кривая 1, рис.3), так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. По окончании кристаллизации, т. е. после полного перехода в твердое состояние, температура снова начинает снижаться, и твердое кристаллическое вещество охлаждается. Теоретически процесс кристаллизации изображается кривой 1. Кривая 2 показывает реальный процесс | кристаллизации. Жидкость непрерывно охлаждается до температуры переохлаждения Тп, лежащей ниже теоретической температуры кристаллизации Ts. При охлаждении ниже температуры Ts со¬здаются энергетические условия, необходимые для протекания про¬цесса кристаллизации.

У некоторых металлов из-за большого переохлаждения скрытая теплота плавления выделяется в первый момент кристаллизации настолько бурно, что температура скачкообразно повышается, при¬ближается к теоретической (кривая 3, рис.3).

Чем больше скорость охлаждения, тем больше величина переохлаждения. Для того, чтобы полностью переохладить металл в жидком состоянии требуются большие скорости охлаждения (миллионы и даже миллиарды градусов в секунду), охлаждение жидкого металла до ком¬натной температуры следует проводить так, чтобы получить перео¬хлажденный жидкий металл (т. е. металл, не имеющий кристалли¬ческого строения) за ничтожную долю секунды. Такой, металл назы¬вается аморфным или металлическим стеклом, который начинает применяться на практике.

1.3. Какую роль играют несовершенства структуры кристаллов. Какую роль играют дислокации в вопросах прочности и пластичности материала.

Встречающиеся в природе кристаллы, как монокристаллы, так и зерна в поликристаллах, никогда не обладают строгой перио¬дичностью в расположении атомов т. е. не являются «идеальными» кристаллами. В действительности «реальные» кристаллы содержат те или иные несовершенства (дефекты) кристаллического строения.

Дефекты в кристаллах принято классифицировать по характеру их измерения в пространстве на точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные), объемные (трехмерные).

Точечными дефектами называются такие нарушения периодично¬сти кристаллической решетки, размеры которых во всех измерениях сопоставимы с размерами атома. К точечным дефектам относят вакансии (узлы в кристаллической решетке, свободные от атомов), межузельные атомы (атомы, находящиеся вне узлов кристаллической решетки), а также примесные атомы, которые могут или замещать атомы основного металла (примеси замещения), или внедряться в на¬иболее свободные места решет¬ки (поры или междоузлия) ана¬логично межузельным атомам (примеси, внедрения)

Линейные дефекты в кристаллах характеризуются тем, что их поперечные раз¬меры не превышают нескольких межатомных расстояний, а длина может достигать размера кристалла. К линейным дефектам относятся дислокации — линии, вдоль и вблизи которых нарушено правильное периодическое расположение атомных плоскостей кристалла. Различают краевую и винтовую дислокации. Кра¬евая дислокация представляет собой границу неполной атомной плоскости (экстра¬плоскости). Винтовую дислокацию можно определить как сдвиг одной части крис¬талла относительно другой.

В кристаллах встречаются и так называемые смешанные дислокации. Дислокации не могут обрываться внутри кри¬сталла — они должны быть либо замкнутыми, либо выходить на поверхность кри¬сталла. Плотность дислокации, т. е. число линий дислокации, пересекающих внутри металла площадку в 1 см2, составляет 103—104 в наиболее совершенных монокристал¬лах до 1012 в сильно деформированных металлах Дислокации создают в кристалле вокруг себя поля упругих напряжений, убывающих обратно пропорционально рас¬стоянию от них. Наличие упругих напряжений вокруг дислокации приводит к их взаимодействию, которое зависит от типа дислокации и их векторов Бюргерса. Под действием внешних напряжений дислокации двигаются (скользят), что опреде¬ляет дислокационный механизм пластической деформации. Перемещение дислока¬ции в плоскости скольжения сопровождается разрывом и образованием вновь меж¬атомных связей только у линии дислокации, поэтому пластическая де¬формация может протекать при малых внешних напряжениях, гораздо меньших тех, которые необходимы для пластической деформации идеального кристалла путем разрыва всех межатомных связей в плоскости скольжения. Обычно дислокации возникают при образовании кристалла из расgлава. Основным механизмом размно¬жения дислокации при пластической деформации являются так называемые источ¬ники Франка-Рида. Это отрезки дислокации, закрепленные на концах, которые под действием напряжений могут прогибатся ,испуская при этом дислокации,и вновь востанавливатся.

Обычно упрочненное состояние достигается при взаимодействии дислокации друг с другом, с атомами при¬месей и частицами другой фазы. Дислокации влияют не только на прочностные и пластические свойства металлов, но также и на их физические свойства (увеличивают электросопротивление, скорость диффузии и т.д.).

Процесс сдвига в кристалле будет происходить тем легче, чем больше дислокации будет в металле. В металле, в котором нет дислокации, сдвиг возможен только за счет одновременного сме¬щения всей части кристалла. В случае, если под действием напря¬жений дислокации не зарождаются, то прочность бездислокационного металла должна быть равна теоретической.

Существует и другой способ упрочнения металлов. Оказывается, что реальная прочность металлов падает с увеличением числа дисло¬кации только вначале. Достигнув минимального значения при не¬которой плотности дислокации, реальная прочность вновь начинает возрастать. Повышение реальной прочности с возра¬станием плотности дислокации объясняется тем, что при этом возни¬кают не только параллельные друг другу дислокации, но и дислока¬ции в разных плоскостях и направлениях. Такие дислокации будут мешать друг другу перемещаться, и реальная

прочность металла повысится.

Давно известны способы упрочне¬ния, ведущие к увеличению полезной плотности дислокации; это — механи¬ческий наклеп, измельчение зерна и блоков мозаики, термическая обработка и т. д. Кроме того, известные методы легирования (т. е. внедрение в решетку чужеродных атомов), созда¬ющие всякого рода несовершенства и искажения, кристаллической решетки, также являются методами создания - препятствий для свободного перемеще¬ния дислокации (блокирования дислокаций).Сюда же относятся способы образования структур с так называемыми упрочняющими фазами, вызывающими дисперсионное твердение и др. Однако при всех этих способах упрочнения прочность не достигает теоретического значения. Следовательно, в той или иной степени наличие дислокации в реальном металлическом кристалле | является причиной более низкой его прочности по сравнению с теоретической, и одновременно придающей способность пластически деформироваться. Можно ли в связи с этим рассматривать способность металла к пластическому деформированию как его недостаток?

Опыт показывает, что способность реального металла пластиче¬ски деформироваться является его важнейшим и полезнейшим свой¬ством. Это свойство используют при различных технологических процессах — при протяжке проволоки, операциях гибки, высадки, вытяжки, штамповки и т. д. Большое значение оно имеет и для обе¬спечения конструктивной прочности или надежности металлических конструкций, деталей машин и других изделий из металла. Опыт по¬казывает. что если металл находится в хрупком состоянии, т. е. если его способность к пластическому деформированию низка, то он в изделиях склонен к внезапным так называемым хрупким раз¬рушениям, которые часто происходят даже при пониженных нагруз¬ках на изделие.

1.4. Характеристика твердых растворов замещения.

В жидком состоянии большинство металлических сплавов, приме¬няемых в технике, представляет собой однородные жидкости, т. е. жидкие растворы. При переходе в твердое состояние во многих таких сплавах однородность сохраняется, следо¬вательно, сохраняется и растворимость. Твердая фаза, образующаяся в результате кристаллизации такого сплава, называется твердым раствором.

Химический или спектральный анализ показывает в твердых растворах наличие двух элементов или более, тогда как по данным металлографического анализа такой сплав, как и чистый металл, имеет одно¬родные зерна (рис. 3).

Рентгеновский ана¬лиз обнаруживает в твердом растворе, как и у чистого металла, только один тип решетки.

Следовательно, в отличие от механической смеси твердый раствор является однофазным, состоит из одного вида кристаллов, имеет одну кри¬сталлическую решетку; в отличие от химического соединения твердый раствор существует не при определенном соотношении компонентов, а в интервале концентраций.

Строение твердых растворов на основе одного из компонентов сплава таково, что в решетку основного металла-растворителя входят атомы растворенного вещества. Здесь возможны два принципиально различных случая: 1. твердые растворы замещения 2. Твердые растворы внедрения мы рассмотрим 1-вый.

Твердые растворы замещения: Металл А имеет, например, ре¬шетку

←предыдущая следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»