Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Минералогия /

Изучение оптических свойств минералов

←предыдущая следующая→
1 2 3 4 5 6 7 8 



Скачать реферат


используя, определяют группу, к которой относится минерал по показателю преломления.

5. Ход лучей через систему поляризатор-кристалл-анализатор.

Для того чтобы понимать явления, наблюдаемые в минерале при скрещенных николях, необходимо ясно представлять себе особенности прохождения света через систему поляризатор - кристалл - анализатор.

Рассмотрение начнем с минерала кубической сингонии или сечения, перпендикулярного к оптической оси анизотропного минерала. В том и другом случае имеем дело с изотропной средой, пропускающей световые волны, колеблющиеся в любых направлениях, следовательно, наблюдаемые явления ничем не будут отличаться от системы двух скрещенных николей. Плоскополяризованная волна, выйдя из поляризатора, пройдет через изотропную среду, сохранив плоскость колебаний без изменения, анализатором пропущена не будет, и поле зрения микроскопа останется темным при любых поворотах столика микроскопа.

Если же между николями поместить анизотропную пластинку, то возникнут явления, существенно отличающиеся от вышеописанных. Как уже известно, анизотропное сечение минерала пропускает световые волны только в двух взаимно перпендикулярных направлениях, соответствующих направлениям осей эллиптического сечения индикатрисы, лежащего в плоскости исследуемого разреза.

Если поворотом столика микроскопа минерал поставить так, чтобы оси его индикатрисы совпали с плоскостями колебаний нижнего и верхнего николей, то волны, вышедшие из нижнего николя - поляризатора, беспрепятственно пройдут через минерал, сохраняя приобретенные в поляризаторе колебания, и далее верхним николем - анализатором пропущены не будут. При повороте столика микроскопа на 360° оси эллиптического сечения индикатрисы четыре раза совпадут с плоскостями колебаний в николях и, следовательно, четыре раза минерал будет на погасании (рис. 15).

Рисунок 15 - Четырехкратное погасание минерала в анализаторном сечении при повороте столика микроскопа на 360°.

При условии косого положения осей индикатрисы исследуемого сечения минерала относительно плоскостей колебаний поляризатора и анализатора (рис. 16) плоскополяризованная волна с амплитудой k, приобретенной в поляризаторе, войдя в минерал, разложится по правилу параллелограмма на две взаимно перпендикулярные волны с амплитудами k1 и k2, колеблющиеся в направлении осей эллиптического сечения индикатрисы n'gn'p. Скорость колебаний каждой волны обратно пропорциональна показателям преломления соответствующих направлений. При прохождении через минерал волна, колеблющаяся в направлении оси n' и поэтому имеющая большую скорость, обгонит волну колеблющуюся в направлении n'g с меньшей скоростью, на некоторую величину Δ (дельта), называемою разностью хода.

Выйдя из минерала, обе плоскополяризованные волны будут перемещаться с одинаковыми скоростями, сохраняя разность хода и направления колебаний, которые они приобрели в кристалле.

Проходя через верхний николь (анализатор) под углом к плоскости его колебаний, каждая из волн вновь разложится на две.

Для одной пары k''1 и k'2 направлением возможных колебаний явится плоскость колебаний анализатора А, перпендикулярная к плоскости рисунка, для другой пары k'1 и k'2 - перпендикулярная ей плоскость П, лежащая в плоскости рисунка. Волны, колеблющиеся в направлении А, получат полное внутреннее отражение и погасятся оправой анализатора; волны, колеблющиеся в направлении П, поляризованы в одной плоскости, имеют одинаковую длину и поэтому способны интерферировать.

Таким образом, верхний николь в системе поляризатор - кристалл - анализатор не только позволяет отличать изотропный минерал от анизотропного, но и создает условия, необходимые для интерференции.

Учитывая необходимость ясно понимать оптические явления, наблюдаемые в минерале при скрещенных николях, подчеркнем основной вывод, который заключается в следующем. Минерал в анизотропном сечении при повороте столика микроскопа на 360° четыре раза погаснет и четыре раза приобретет некоторую интерференционную окраску. Момент погасания свидетельствует о том, что направления, вдоль которых минерал пропускает световые колебания (оси эллиптического сечения индикатрисы), совпали с направлением колебаний поляризатора и анализатора (с нитями окулярного креста).

6. Исследование оптических свойств кристаллов при двух николях в параллельном свете.

При скрещенных николях в параллельном свете определяют силу двойного лучепреломления минералов, положение осей оптической индикатрисы относительно кристаллографических направлений (ориентировку индикатрисы), а также выявляют некоторые особенности строения минералов — наличие двойников, зональности и др.

Определение силы двойного лучепреломления.

Луч света, проходящий через пластинку анизотропного минерала, разбивается на два луча с разными показателями преломления, распространяющиеся с различными скоростями, и колеблющиеся во взаимно-перпендикулярных плоскостях.

Силой двойного лучепреломления () называется величина, показывающая насколько показатель преломления одного луча отличается от показателя преломления другого:

 = n1 – n2 , {1}

где n1 и n2 – величины показателей преломления.

Сила двойного лучепреломления – величина переменная. Она изменяется от 0, когда луч направлен по оптической оси кристалла, до какого-то максимума, когда луч направлен перпендикулярно к оптической оси (в одноосных кристаллах) или к плоскости оптических осей (в двуосных кристаллах). За истинную величину силы двойного лучепреломления (ведь только она может использоваться для определения минералов) принимают ее максимальное значение:

 = ng – np , {2}

где ng – наибольший по величине показатель преломления данного минерала, а np – наименьший.

Определение силы двойного лучепреломления минералов основано изучении явления интерференции световых волн, проходящих через кристалл в шлифе.

Выше было сказано, что луч света, входя в кристалл, раздваивается, и каждая из образовавшихся световых волн распространяется в кристалле со своей скоростью. В результате один луч обгоняет другой, и между ними возникает разность хода (R). Величина разности хода измеряется в миллимикронах и прямо пропорциональна длине пути, пройденного в анизотропной среде, то есть толщине кристаллической пластинки – (толщина шлифа) и силе двойного лучепреломления данного кристалла - :

R = d  = d (ng – np) {3}

Наличие определенной разности ходе при прохождении лучей света через анализатор обусловливает их интерференцию, вследствие чего зерна минералов при изучении их под микроскопом в белом света приобретают интерференционные окраски. При этом каждому значению разности хода соответствует своя интерференционная окраска. Следовательно, по характеру интерференционной окраски можно определить разность хода – R, которая, в свою очередь, связана с искомой уже известной зависимостью. В конечном итоге, определение силы двойного лучепреломления минерала сводится к определению интерференционной окраски.

При определении силы двойного лучепреломления минералов пользуются таблицей Мишель-Леви ( приложение 1).

По горизонтальной оси этой нанесены величины разности хода (в миллимикронах) с соответствующей им интерференционной окраской (в виде вертикальных полосок соответствующих цветов). При увеличении R цвета периодически повторяются, это позволяет разбить их на порядки.

В первый порядок входят цвета: серый, белый, желтый, оранжевый и красный, постепенно переходящие друг в друга.

Второй и третий порядки начинаются с фиолетового цвета, далее следуют синий, зеленый, желтый, оранжевый и красный.

В первом порядке имеются отсутствующие в других порядках серый и белый цвета, но нет синего и зеленого.

По вертикальной оси таблицы отложена толщина шлифов (в сотых и тысячных долях мм). Из нижнего левого угла таблицы веерообразно вверх и вправо расходятся прямые линии, на концах которых указаны значения силы двойного лучепреломления. (Рис. 17)

Рисунок 17 - Определение цифрового значения двупреломления по номограмме Мишель-Леви.

Для практического определения силы двойного лучепреломления необходимо под микроскопом найти наивысшую интерференционную окраску минерала и точку пересечения ее на таблице Мишель-Леви с горизонтальной линией, соответствующей стандартной толщине шлифа =0,03 мм. Через эту точку проходит одна из веерообразно расходящихся линий, на верхнем конце которой и указана искомая величина равная ng – np.

При изучении интерференционной окраски минерала необходимо определить ее порядок. Для этого пользуются так называемым правилом каемок и методом компенсации.

Способ определения «по каемкам» очень прост. В шлифе выбирают зерно исследуемого минерала, периферическая часть которого скошена на клин. В пределах скоса толщина пластинки d переменная и, следовательно, переменная разность хода. Указанное обусловливает появление цветных каемок, представляющих собой последовательную смену цветов интерференции от низких цветов первого порядка в тонкой периферической части зерна к более высоким в его внутренней части (рис. 18). Сопоставляя чередование цветов в каемках с цветной номограммой, легко прийти к выводу о порядке цвета интерференции в центральной части исследуемого зерна. Чем круче скошено зерно, тем уже цветные каемки; если край зерна вертикален, каемки отсутствуют. В этом случае вопрос о порядке цвета интерференции минерала в данном сечении может быть решен только с помощью компенсатора.

←предыдущая следующая→
1 2 3 4 5 6 7 8 



Copyright © 2005—2007 «Mark5»