Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Радиоэлектроника /

Активные диэлектрики

←предыдущая следующая→
1 2 3 4 5 6 7 



Скачать реферат


1. Материалы со слабо выраженной зависимостью диэлектрической проницаемости от температуры. Типичным примером является сегнетокерамика Т-900. Данный материал является твердым раствором титанатов стронция и висмута. Максимум диэлектрической проницаемости соответствует точке Кюри, равной -140С. В области рабочих температур (-50 +150) температурная зависимость диэлектрической проницаемости - слегка падающая. Среднее значение  составляет 900.

2. Материалы со сглаженной зависимостью диэлектрической проницаемости от температуры. Типичный представитель этого класса материалов сегнетокерамика - СМ-1. Данную сегнетокерамику получают на основе титаната бария с добавкой окислов циркония и висмута. Материал используется для изготовления малогабаритных конденсаторов на низкие напряжения.

3. Материалы с максимальным значением диэлектрической проницаемости в заданном диапазоне температур. Типичным представителем является материал Т-8000. Данный материал является твердым раствором BaTiO3 – BaZrO3. Максимум диэлектрической проницаемости находится в области комнатной температуры и составляет 8000. Используется для изготовления конденсаторов при комнатной температуре, работающих в нешироком диапазоне температур.

Сегнетоэлектрическая керамика для варикондов. Варикондами называют нелинейные конденсаторы, емкость которых зависит от напряженности электрического поля. Одна из важнейших характеристик варикондов – коэффициент нелинейности К – отношение максимального значения диэлектрической проницаемости к начальной диэлектрической проницаемости. Коэффициент нелинейности для различных материалов изменяется от 4 до 50. Основной кристаллической фазой в таких материалах являются твердые растворы системы Ba(Ti,Sn)O3 или Pb(Ni,Zr,Sn)O3.

Сегнетоэлектрики с прямоугольной формой петли гистерезиса. Благодаря диэлектрическому гистерезису сегнетоэлектрики можно использовать для записи информации. Поляризация в одном направлении означает хранение в памяти единицы, а поляризация в другом направлении означает хранение нуля. Для этих целей наиболее подходят материалы с петлей гистерезиса, близкой к прямоугольной. Прямоугольная петля гистерезиса наблюдается в монокристаллических сегнетоэлектриках.

Пьезоэлектрики.

В 1880 году братьями П. и Ж. Кюри был открыт прямой пьезоэффект – возникновение электростатических зарядов на пластинке, вырезанной из кристалла кварца, под действием механических напряжений. Эти заряды пропорциональны механическому напряжению, меняют знак вместе с ним и исчезают после снятия напряжений.

Наряду с прямым пьезоэффектом, наблюдается и обратный пьезоэффект, когда под действием электрического поля возникает механическая деформация кристалла, причем величина механической деформации прямо пропорциональна напряженности электрического поля.

Обратный пьезоэффект не следует смешивать с электрострикцией – деформацией диэлектриков под действием электрического поля. Электрострикция наблюдается как в твердых диэлектриках, так и жидких, тогда как пьезоэффект наблюдается только в твердых диэлектриках с определенной кристаллической структурой. Кроме того, при электрострикции наблюдается квадратичная зависимость между напряженностью поля и деформацией, а при пьезоэффекте – зависимость линейная.

Пьезоэлектрический эффект наблюдается только тогда, когда кристаллическая решетка несимметрична. Отсутствие центра симметрии кристаллической решетки является необходимым, но недостаточным условием появления пьезоэлектрического эффекта.

Как отмечалось выше, при прямом пьезоэффекте заряды на поверхности диэлектрика пропорциональны приложенной силе.

Где Q – величина заряда, F – величина приложенной силы, d - коэффициент пропорциональности между зарядом и приложенной силой, называемый пьезомодулем.

Поделив величину заряда и приложенную силу на площадь S, получим

или ( 3)

где: qs – поверхностная плотность зарядов, Р – поляризация,  - механические напряжения.

Для случая обратного пьезоэффекта пьезомодуль связывает величину относительной деформации кристалла с напряженностью электрического поля

( 4)

Важно отметить, что приведенные соотношения имеют лишь качественный характер. Реальное описание пьезоэлектрического эффекта намного сложнее. Дело в том, что механическое напряжение является тензорной величиной, имеющей шесть независимых компонентов, тогда как поляризация является векторной величиной. Поэтому пьезомодуль, устанавливающий связь между вектором поляризации и механическими напряжениями, является тензором третьего ранга, имеющим 18 независимых компонентов. В тензорной форме уравнение прямого и обратного пьезоэффектов принимает следующий вид:

( 5)

( 6)

где i = 1,2,3 – компоненты вектора поляризованности; j = 1,2…6 – компоненты тензора механических напряжений или деформаций.

Помимо пьезомодуля еще одной важной характеристикой пьезоэлектриков является коэффициент электромеханической связи k. Квадрат этого коэффициента представляет собой отношение механической энергии к полной электрической энергии полученной от источника питания.

Пьезоэлетрические материалы

В настоящее время известно большое количество веществ, обладающих пьезоэлектрическими свойствами, в том числе – все сегнетоэлектрики. Однако не все пьезоэлектрические материала нашли техническое применение.

Одним из наиболее известных пьезоэлектриков является монокристаллический кварц – безводный диоксид кремния, кристаллизующийся в тригонально-трапецоэдрическом классе гексагональной сингонии. Крупные природные прозрачные кристаллы кварца получили название горного хрусталя. В кристаллах кварца принято различать три главные оси: Х – ось, проходящую через вершины шестиугольника поперечного сечения (таких осей 3); Y - ось, перпендикулярную осям шестиугольника поперечного сечения (таких осей также три); Z – ось, проходящую через вершины кристалла.

Пластинки кварца, вырезанные перпендикулярно оси Z, не обладают пьезоэлектрическим эффектом. Наибольший эффект наблюдается в пластинках, вырезанных перпендикулярно оси Х.

Плоскопараллельная полированная пластинка кварца с электродами и держателем представляет собой пьезоэлектрический резонатор, то есть является колебательным контуром с определенной резонансной частотой колебаний. Резонансная частота зависит от толщины пластинки и направления среза. Преимуществами кварцевых резонаторов является малый tg и высокая механическая добротность. Благодаря высокой механической добротности кварцевые резонаторы используют в качестве фильтров с высокой избирательной способностью, а также для стабилизации и эталонирования частоты в генераторах. Одним из важнейших требований к таким резонаторам является температурная стабильность резонансной частоты. Этому требованию удовлетворяют пластинки специальных косых срезов по отношению к главным осям.

Природные кристаллы кварца, как правило, содержат дефекты, снижающие их ценность. Поэтому основные потребности пьезотехники удовлетворяются искусственными кристаллами, выращиваемыми из насыщенных кремнием щелочных растворов.

Помимо кварца, в качестве материалов для пьезоэлектрических элементов широко используют ниобат и танталат лития. По своей природе данные материалы являются сегнетоэлектриками. Для придания им пьезоэлектрических свойств производят отжиг в сильном электрическом поле, что проводит к созданию монодоменного состояния.

Аналогичным образом можно перевести в пьезоэлектрическое состояния сегнетокерамику. Поляризованную сегнетокерамику называют пьезокерамикой. Пьезокерамика имеет перед монокристаллами то преимущество, что из нее можно изготовить активный элемент любой формы и размера. В качестве материала для пьезокерамики используют твердые растворы на основе титаната бария, титаната-цирконата свинца, метаниобата свинца.

Пьезокерамические материалы принято разделять на четыре функциональные группы. Материалы группы 1 используют для изготовления высокочувствительных элементов, работающих в режиме приема или излучения механических колебаний. Для таких материалов необходим большой пьезомодуль. Материалы группы 2 используют для изготовления генераторов сильных сигналов, работающих в условиях сильных электрических полей или высоких механических напряжений. Для таких материалов необходимо высокое удельное электрическое сопротивление. Материалы группы 3 используют для изготовления пьезоэлементов, обладающих повышенной стабильностью резонансных частот в зависимости от температуры и времени. Материалы группы 4 используются для изготовления высокотемпературных пьезоэлементов.

Материалы на основе титаната бария. Наиболее дешевым материалом является пьезокерамика ТБ-1 (BaTiO3). Отсутствие в составе летучих при обжиге компонентов и простота технологии изготовления обусловливают его широкое распространение. Большей температурной стабильностью характеристик обладают твердые растворы титанатов бария и кальция с добавкой кобальта (ТБК-3) и титанатов бария кальция и свинца (ТБКС).

Материалы на основе твердых растворов титаната – цирконата свинца. На основе этих твердых растворов разработана серия пьезоэлектрических материалов, носящих условное название ЦТС (за рубежом PZT). Состав этих материалов базируется

←предыдущая следующая→
1 2 3 4 5 6 7 



Copyright © 2005—2007 «Mark5»