Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Радиоэлектроника /

Воспроизводство звука

←предыдущая следующая→
1 2 3 



Скачать реферат


катушки. На всем пути совершенствования головок центрирующая шайба изготавливалась из разных материалов (картона, бумаги, текстолита, ткани). Сегодня практически все головки имеют центрирующую шайбу с концентрическими канавками, прессованную из ткани с последующей пропиткой.

Важнейший элемент конструкции и головки, который во многом определяет ее электроакустические характеристики, — это магнитная система. Она образуется кольцевым магнитом, расположенным между двумя кольцевыми фланцами и цилиндрическим керном, который образует с передним фланцем воздушный зазор. Конструкция магнитной системы с керновым магнитом, широко распространенная в середине прошлого века, ныне в головках, предназначенных для многополосных акустических систем, практически не используется. Магнитная система создает в зазоре постоянное магнитное поле. При подаче сигнала на катушку ее магнитное поле взаимодействует с полем магнитной системы, заставляя ее перемещаться в зависимости от направления тока вперед и назад и двигать прикрепленный к ней диффузор. Зазор должен быть как можно меньше: так повышается эффективность взаимодействия катушки и постоянного магнита.

Магнитное поле системы с кольцевым магнитом не замыкается полностью в магнитопроводах. Эта конструкция имеет внешнее поле рассеяния, которое может влиять на другие устройства, например, кинескоп цветного телевизора. Поэтому в случае использования таких головок в акустических системах домашнего кинотеатра требуется дополнительный магнитный экран, представляющий собой стакан из магнитомягкого материала, которым закрывают снаружи всю магнитную систему.

Форма полюсных наконечников (отверстия верхнего фланца) и керна определяет величину магнитной индукции в воздушном зазоре и равномерность распределения в нем магнитного потока. От размеров элементов магнитной системы и ширины воздушного зазора зависит степень нагрева звуковой катушки и, следовательно, ее термостойкость. Здесь сталкиваются противоречивые требования. Для улучшения вентиляции нужно увеличить зазор, но это снижает чувствительность головки и требует увеличения магнита. Тут появляется поле деятельности для поиска компромиссного инженерного решения. Поэтому, например, в мощных НЧ - головках диаметр катушки больше, и часто используются два кольцевых магнита.

Как известно, для эффективной работы НЧ - головки необходимо, чтобы звуковые волны от передней и задней стороны диффузора были изолированы. Поэтому центральное отверстие конического диффузора закрывают колпачком, который из-за дополнительной функции называется пылезащитным. В некоторых конструкциях в центральном сердечнике магнитной системы делают отверстие, закрытое звукопоглотителем, а в качестве материала колпачка используют плотную ткань или нетканый материал с большим акустическим сопротивлением. Поршневое движение диффузора в широкой полосе частот возможно только при его идеальной жесткости. Для реальных диффузоров из-за возникновения продольных колебаний диффузора эффективная полоса существенно сужается. Заметим, что и для идеального диффузора полоса ограничена его физическими размерами, но уже по другой причине. Скорость звука в воздухе имеет конечное значение около 340 м/с при комнатной температуре. При некоторой частоте длина звуковой волны становится соизмерима с размером диффузора и даже меньше его. На практике это проявляется как сужение диаграммы направленности динамической головки с повышением частоты. То есть чем выше частота, тем ближе к оси головки должен находиться слушатель, чтобы услышать высокие частоты. Так для диффузора диаметром 10 дюймов (250 см) теоретическая максимальная частота, на которой диаграмма акустического излучения сжимается до узкого луча, равна 1335 Гц. Для наиболее часто используемого размера 8 дюймов (200 мм) она составит уже 2015 Гц, для головки с диффузором 5 дюймов (125 мм) — 3316 Гц, а для типичного твитера диаметром 1 дюйм (25 мм) — 13680 Гц. На низких и средних частотах конструкторы стараются не заставлять головки работать выше этих частот. Для ВЧ - головок приходится идти на технические хитрости. Как правило, перед диффузором устанавливается рассекатель той или иной формы, в зависимости от того, в какой плоскости необходимо расширить диаграмму направленности излучения. В нашем примере конструкции ВЧ - головки шестилучевой рассекатель обеспечивает оптимальное рассеивание, как в вертикальной, так и в горизонтальной плоскостях. В СЧ -головках для расширения диаграммы также используют рассекатели в виде конусов со сложной образующей.

Очень важным параметром динамического громкоговорителя является линейность его амплитудной характеристики. Это зависимость звукового давления от амплитуды колебания диффузора. В некотором диапазоне средних значений все работает нормально. Однако при малых значениях входного сигнала силы взаимодействия поля катушки и постоянного магнита не хватает на преодоление упругих сил подвеса. Это проявляется на слух как ухудшение воспроизведения низких частот при малых уровнях сигнала. При больших амплитудах катушка выходит за пределы поля магнита в зазоре, что резко увеличивает уровень нелинейных искажений. Амплитуда перемещения диффузора, в пределах которой амплитудная характеристика головки сохраняет линейность, очень небольшая. Для НЧ - головок она редко превышает 6 мм, а для ВЧ - головок — 0,3 мм. Благодаря столь малому ходу для улучшения теплопередачи в ВЧ - головках зазор магнитной системы заполняют магнитной жидкостью, которая представляет собой смесь силиконовой смазки и мельчайшего порошка ферромагнитного материала. Однако их применение ограничивает срок службы головки из-за значительного увеличения со временем вязкости смазки.

Головки звукоснимателей

(на примере Blue Point № 2)

“Sumiko Blue Point № 2” смонтирована в обычном пластмассовом корпусе, ее подвижная система оснащена прочным стандартным иглодержателем и надежно защищена от случайных механических повреждений. Корпус головки — одна из серьезнейших помех качеству звука. Вследствие блуждания и переотражения звуковых волн вблизи электромеханического преобразователя, в звуковом тракте господствуют раздражающие слух искажения, которые существенно превосходят электрическую нелинейность усилителей. Если изготавливать корпуса из мягких материалов с большими внутренними потерями — высоким фактором демпфирования,— то звучание потеряет детальность, станет вялым, как говорится, “замыленным”. В очень дорогих головках удается найти компромисс между качеством звука и материалом корпуса. Это либо сложная технология формовки вспененных компаундов, либо кропотливая ручная обработка специально отобранной древесины.

В последние годы появилась тенденция к отказу от применения компенсатора скатывающей силы (antiskating). Без антискейтинга качество звучания может быть лучше, но при этом произойдет более быстрый и асимметричный износ иглы. Фирма “Sumiko” рекомендует компромисс: устанавливать антискейтинг на половину значения прижимной силы. Например, при прижимной силе 2 г, величина антискейтинга должна быть равна 1 г, а в крайнем случае не превышать 1,5 г.

Tехнические параметры по данным производителя

Головки звукоснимателей Sumiko “Blue Point № 2” ($299)

Иглодержатель

Игла

Механоэлектрический преобразователь

Механический демпфер

Выходное напряжение

Разделение каналов на частоте 1 кГц

Разбаланс каналов на частоте 1 кГц

Внутренний импеданс

Рекомендуемый импеданс нагрузки

Диапазон воспроизводимых частот

Допустимый диапазон прижимной силы

Оптимальная прижимная сила

Динамическая податливость преобразователя

Масса головки Стержень из бора продольной структуры

Эллиптическая, радиусы 0,0076 х 0,0177 мм

Подвижная катушка (МС)

Синтетическая резина

2,5 мВ

32 дБ

0,5 дБ

135 Ом

47 кОм

15–35000 Гц

1,6–2,0 г

1,8 г

15 х 10–6 см/дин

6,3 г

Воспроизведение звука с фонографических цилиндров Эдисона

Институт проблем регистрации информации НАН Украины предложил и реализовал принципиально новый метод высококачественного воспроизведения звука с фонографических цилиндров Эдисона. Предложенный цифровой оптико-механический метод с интерферометрической схемой измерения позволяет обеспечить физическую сохранность восковых цилиндров и получить высококачественное воспроизведение звука.

Одна из главных характерных особенностей разработанного и исследованного метода состоит в том, что профиль звуковой дорожки в цифровой форме снимается с цилиндра и вводится в компьютер и после соответствующей обработки преобразуется в звук. Такой метод имеет ряд преимуществ. Во-первых, запись профиля звуковой дорожки может быть выполнена при скоростях в 10-50 раз ниже, чем скорость звуковой записи. Значительное уменьшение скорости вращения цилиндра позволяет резко уменьшить динамическую нагрузку на поверхность цилиндра, что очень важно с точки зрения его сохранения. При уменьшении скорости вращения цилиндра до 3-6 оборотов в минуту динамическая нагрузка на поверхность цилиндра в системе воспроизведения может быть уменьшена в 300-500 раз по сравнению с пьезоэлектрическим методом.

Во-вторых, метод позволяет значительно улучшить качество воспроизведения звука. Анализ процесса воспроизведения звука с цилиндров Эдисона показал, что один из основных шумов - шум, возникающий при контакте иглы звукоснимателя с частицами пыли и царапинами. Размер пылинок (3-10 мкм) и большинства царапин (5-10 мкм) намного меньше отпечатка звуковой

←предыдущая следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»