Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Радиоэлектроника /

Проектирование инфракрасного канала

←предыдущая  следующая→
1 2 3 4 5 6 7 8 9 10 ... 



Скачать реферат


Содержание

Введение. 3

1 Бескабельные каналы связи 8

2 Преимущества технологии беспроводной передачи в инфракрасном диапазоне 11

3 Простое описание технологии (физика процессов) 15

4 Технология (компоненты) 22

5 Зависимость качества передачи от погоды 30

6 Инфракрасные системы связи 37

7 Беспроводная оптическая связь. Мифы и реальность 62

8 Расчет инфракрасного канала 76

9 Обзор рынка ИК систем 100

10 Нормы и требования 106

11 Заключение 108

12 Список использованных источников 110

Введение.

Концепция передачи данных на основе использования инфракрасных (ИК) каналов прорабатывалась в течение многих лет и интерес к ней в настоящее время только расширяется в связи возрастающими потребностями в высокоскоростных беспроводных каналах связи.

Еще в конце 60-х годов в Москве проводились испытания передачи данных на базе Российского оборудования беспроводной инфракрасной связи, которое было установлено между МГУ и Зубовской площадью. Потом проводился ряд экспериментов в начале 70-х годов в различных регионах страны. В целом, испытания были успешными, но на тот момент у специалистов сложилось достаточно прохладное мнение об этой технологии и сводилось оно к тому, что плохие погодные условия делают использование беспроводных инфракрасных каналов неприемлемым и бесперспективным направлением.

Как мы увидим дальше, ограничение на использование данного вида связи обуславливается не только уровнем развития технологии, но и возможностью прогнозирования поведения системы для корректного определения границ применимости технологии. Затем наметился перерыв в развитии интереса к применению технологии для передачи данных. Он остался в основном в области военного применения для различных систем целеуказания, дальномеров и т.д. и т.п.

Вновь к применению ИК систем для беспроводной передачи данных вернулись к концу 80-х годов, когда получили широкое развитее локальные вычислительные сети, и, что особенно важно, получила большое развитие технология передачи данных по оптоволоконным кабелям. Обе технологии чрезвычайно близки и различаются, в основном, адаптацией систем под среду передачи.

Коммерческие ИК cистемы передачи трафика локальных сетей или для внутрикорпоративных систем стали появляться на рынке в начале 90-х годов. Одним из самых активных первопроходцев была канадская компания A.T.Schindler, но она была не единственной. Заметную активность проявляли фирмы Joltи SilCom системы, с обычным сетевым интерфейсами Ethernet, Token Ring, обеспечивали передачу данных на дистанциях до 500 метров и использовали в передающем устройстве инфракрасные полупроводниковые излучающие диоды.

Системы текоммуникационного применения получили свое развитие лишь к 1998г, когда уровень развития лазерной технологии позволил освоить в массовом производстве лазерные полупроводниковые диоды мощностью 100мВт и более, с высоким показателем параметра наработки на отказ (MTBF), а именно более 50000 часов – тот минимальный уровень, который требуется для надежного функционирования телекоммуникационной коммерческой системы.

Значительный опыт, приобретенный в результате большого количества инсталляций систем передачи информации на основе оптоволоконных каналов с инфракрасными приемопередатчиками, позволил довести эту технологию до совершенства. При этом был обеспечен высокий уровень безопасности данных и достигнута оптимальная стоимость, так как в данном случае отпадала необходимость в использовании дорогих в прокладке арендуемых кабельных каналов связи.

Использование радиотехнологии является хотя и доминирующим, но не единственным способом замены дорогостоящих проводных коммуникаций. Все больше производителей телекоммуникационного оборудования обращают внимание на инфракрасную часть электромагнитного спектра как на вполне подходящую среду передачи информационных сигналов. Активно развивающаяся технология передачи данных с помощью инфракрасных оптических модемов получила название беспроводной оптической связи. Ныне с уверенностью можно сказать: беспроводная оптика перешагнула порог научно-исследовательских лабораторий и ищет дорогу на телекоммуникационный рынок, как в операторской, так и в корпоративной нише. Достаточно того, что несколько известных сетевых интеграторов (в частности, Diamond Communication, "Телеком-Транспорт" и MicroMax) включили оборудование лазерных модемов в спецификации своих типовых решений для построения распределенных сетей.

Беспроводные появились позже кабельных локальных сетей, но получили широкое распространение. Различают два типа беспроводных локальных сетей. Широко распространены локальные радиосети. Это связано с тем, что в этих сетях стены неэкранированных помещений являются прозрачными для сигналов, что обеспечивает взаимодействие информационных систем на значительных расстояниях. Вторым типом являются локальные инфракрасные сети. Они намного дешевле радиосетей. Кроме этого, они обеспечивают высокую защиту от НеСанкционированного Доступа (НСД) и не подтверждены влиянию радиопомех. Вместе с этим, каналы инфракрасных сетей работают только в пределах прямой видимости взаимодействующих партнеров и не проходят сквозь стены.

Локальная инфракрасная сеть – беспроводная локальная сеть, в которой передача сигналов осуществляется по инфракрасным каналам.

Сфера применения ИК делится на две четко разграниченные области: короткие линии связи с периферийными устройствами и соединения внутри ЛВС (или даже между ЛВС). В обоих случаях требуется располагать устройства на линии прямой видимости, но каждый вариант имеет свои преимущества. В целом ИK-соединения отличаются высокой степенью защищенности информации и создают мало помех.

Инфракрасный канал – канал использующий для передачи данных инфракрасное излучение.

Инфракрасный канал работает в диапазоне высоких частот, где сигналы мало подвержены электрическим помехам. В соответствии с этим, передача данных осуществляется с небольшим числом ошибок и высокими скоростями. Вместе с этим для использования канала необходимо, чтобы Оконечное Оборудование Данных (ООД) "видело" друг друга. Более того, из-за быстрого затухания сигнала в не всегда чистой атмосфере, длина инфракрасного канала в воздухе ограничена небольшими расстояниями. Так, при использовании направленной антенны и маломощного передатчика (100мВт) связь возможна на расстоянии до 30-50 м. Однако, применение направленной антенны с более мощным передатчиком (250 мВт) увеличивает это расстояние до 10 км. Из-за пыли, дождя, снега происходит рассеивание сигнала.

Благодаря созданию инфракрасных лазеров и световодов длина инфракрасных каналов резко увеличилась. Поэтому они стали использоваться не только на земле, но и в космосе. Возникли инфракрасные сети, построенные на инфракрасных каналах. Особенно широко применяются локальные инфракрасные сети. Стандарты инфракрасных сетей разрабатывает находящаяся в Калифорнии (США) "ассоциация инфракрасных данных" IRDA, созданная ведущими производителями информационных средств.

1 Бескабельные каналы связи

Кроме кабельных, в компьютерных сетях иногда используются также бескабельные каналы. Их главное преимущество состоит в том, что не требуется никакой прокладки проводов (не надо делать отверстий в стенах, не надо закреплять кабель в трубах и желобах, прокладывать его под фальшполами, над подвесными потолками или в вентиляционных шaxтax, не надо искать и устранять повреждения кабеля). К тому же компьютерные сети можно в этом случае легко перемещать в пределах комнаты или здания, так как они ни к чему не привязаны.

Радиоканал использует передачу информации по радиоволнам, поэтому он может обеспечить связь на многие десятки, сотни и даже тысячи километров. Скорость передачи может достигать десятков мегабит в секунду здесь многое зависит от выбранной длины волны и способа кодирования). Однако в локальных сетях радиоканал не получил широкого распространения из-за довольно высокой стоимости передающих и приемных устройств, низкой помехозащищенности, полного отсутствия секретности передаваемой информации и низкой надежности связи. А вот для глобальных сетей радиоканал часто является единственно возможным решением, так как позволяет с помощью спутников-ретрансляторов сравнительно просто обеспечить связь со всем миром. Используют радиоканал , и для связи двух и более локальных сетей, находящихся далеко друг от друга, в единую сеть.

Существует несколько стандартных типов радиопередачи информации. Остановимся на двух из них.

• Передача в узком спектре (или одночастотная передача) рассчитана на охват площади до 46 500 м2. Радиосигнал в данном случае не проникает через металлические и железобетонные преграды, поэтому даже в пределах одного здания могут быть серьезные проблемы со связью. Связь в данном случае относительно медленная (около 4,8 Мбит/с).

• Передача в рассеянном спектре для преодоления недостатков одночастотной передачи предполагает использование некоторой полосы частот, разделенной на каналы. Все абоненты сети через определенный временной интервал синхронно переходят на следующий канал. Для повышения секретности используется специальное кодирование информации. Скорость передачи при этом невысока - не более 2 Мбит/с, расстояние между абонентами - не более 3,2 км на открытом пространстве и не более 120 м внутри здания.

Кроме указанных типов, существуют и другие радиоканалы, например сотовые сети, строящиеся по тем же принципам, что и сотовые телефонные сети (они используют равномерно распределенные по площади ретрансляторы), а также микроволновые сети, применяющие узконаправленную передачу между наземными объектами или между

←предыдущая  следующая→
1 2 3 4 5 6 7 8 9 10 ... 



Copyright © 2005—2007 «Mark5»