Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Радиоэлектроника /

Тиристоры

←предыдущая  следующая→
1 2 



Скачать реферат


Устройство, принцип работы, обозначения диодных и триодных тиристоров .

Приборы с четырехслойной структурой р-п-р-п представляют собой один из видов многочисленного семейства полупроводниковых приборов, свой¬ства которых определяются наличием в толще полупроводниковой пластины смежных слоев с различными типами проводимости. Основу такого прибора со¬ставляет кремниевая пластина, имеющая четырехслойную структуру, в которой чередуются слои с дырочной р и электронной n проводимостями (рис. l.a) Эти четыре слоя образуют три р-п перехода J1,J2, J3. Выводы в приборах с че- тырехслойной структурой делаются от двух крайних областей (р и n), а в боль¬шинстве приборов - и от внутренней области р.

Крайнюю область р структуры, к которой подключается положительный полюс источника питания, принято называть анодом A , крайнюю область n, к которой подключается отрицательный полюс этого источника,-катодом К, а вывод от внутренней области р-управляющим электродом УЭ. Естественно, что для полупроводникового прибора такие определения носят ус¬ловный характер, однако они получили широкое распространение по аналогии с тиратронами и ими удобно пользоваться при описании схем с этими приборами.

Согласно ГОСТ 15133-77 все переключающие полупроводниковые приборы с двумя устойчивыми состояниями, имеющие три или более р-п перехода, на

Рис.. Схематическое устройство полупроводникового прибора с четырехслой- ной структурой (а), представление его в виде двухтранзисторной схемы (б, в)

зываются тиристорами. Приборы с двумя выводами (анод и катод) назы¬ваются диодными тиристорами или динисторами, а приборы с тремя выводами (анод, катод, управляющий электрод) - т р и о д н ы м и - тристорами или тринисторами.

Полупроводниковый прибор с четырехслойной структурой может быть мо¬делирован комбинацией двух обычных транзисторов с различными типами про¬водимости (рис. 1.б.в); VT1 со структурой p-n-pi и VT2 со структурой п-р-п. У транзистора VT1 переход J1 является эмиттерным, а переход J2 коллекторным, у транзистора УТ2 эмиттерным служит переход J3, а коллекторным J2, таким образом, оба транзистора имеют общий коллекторный переход J2 (рис. 1.б). Крайние области четырехслойной полупроводниковой структуры являются эмит¬терами, а внутренние-базами и коллекторами составляющих транзисторов VT1 и VT2.

База и коллектор транзистора VT` соединяются соответственно с коллекто¬ром и базой транзистора VT2, образуя цепь внутренней положительной обратной связи (рис. 1.б.в). Действительно, из рис. l.в видно, что коллекторный ток Ik1 транзистора VT1 одновременно является базовым током Iб2, отпирающим тран¬зистор VT2, а коллекторный ток Ik2 последнего-базовым током Iб1, отпирающим трамзистор VT1, т. е. база каждого транзистора питается коллек¬торным током другого транзистора.

2. Вольт-амперные характеристики .диодных и триодных тиристоров

Режим работы динисторов и тринисторов хорошо иллюстрируется их 'статическими вольт-амперными характеристиками, из которых можно получить представление об основных параметрах этих приборов. На рис. 5,а приведена типовая вольт-амперная характеристика динистора. Здесь по горизонтальной оси .отложено напряжение и между его анодом и катодом (анодное напряжение), а по вертикальной-ток I, протекающий через прибор. Область характеристики при положительных анодных напряжениях образует прямую ветвь, а при отрицательных - обратную ветвь характеристики. На характеристике можно выде¬лить четыре участка, обозначенные на рис. 5,a арабскими цифрами, каждый из которых соответствует особому состоянию четырехслойной полупроводниковой структуры.

Участок 1 характеристики соответствует закрытому состоянию (в прямом .направлении) динистора. На этом участке через динистор протекает небольшой ток Iзс -ток прибора в закрытом состоя¬нии. В закрытом состоянии сопротивление промежутка анод-катод прибора велико и обратно пропорционально значению тока Iзс . В пределах участка 1 увеличение анодного напряжения мало влияет на ток, пока не будет достигну¬то напряжение (точка а характеристики), при котором в четырехслойной по¬лупроводниковой структуре наступает лавинообразный процесс нарастания тока, и динистор переключается в открытое состояние. Прямое напряжение, соответствующее точке а характеристики, называется напряжением переключения Uпри, а ток, протекающий при этом через прибор,-током переключения Iпри.

В процессе переключения динистора в открытое состояние незначительное увеличение тока сопровождается быстрым уменьшением напряжения на аноде прибора (участок 2), так как составляющие транзисторы переходят в режим насыщения (рис. l.б.в). Сопротивление динистора в пределах участка 2 стано¬вится отрицательным.

Участок 3 вольт-амперной характеристики соответствует открытому состоя¬нию прибора. В пределах этого участка все три р-п перехода полупроводнико¬вой структуры включены в прямом направлении и относительно малое напря¬жение, приложенное к прибору, может создать большой ток Iос в открытом со¬стоянии, который при данном напряжении источника питания практически оп¬ределяется только сопротивлением внешней цепи. Падение напряжения на от¬крытом приборе-напряжение в открытом состоянии Uос, как и у обычного диода, незначительно зависит от прямого тока. Что касается значения наи¬большего постоянного тока, который может пропускать прибор в этом режиме, то, как обычно в полупроводниковых структурах, он определяется площадью

р-п перехода и условиями охлаждения прибора.

Динистор сохраняет открытое состояние, пока прямой ток Iпр будет

больше некоторого минимального значения-удерживающего тока Iуд (точка б на характеристике). При снижении тока до значения Iпр < Iуд динистор скач¬ком возвратится в закрытое состояние.

Таким образом, динистор может находиться в одном из двух устойчивых состояний. Первое (участок 1) характеризуется большим напряжением на при¬боре (Uзс) и незначительным током '(Iзс), протекающим через него, а второе (участок 3) -малым напряжением на приборе (Uос) и большим током (Iос). Рабочая точка на участке 2 вольт-ампердой характеристики находиться не мо* жет.

Участок 4 характеризует собой режим динистора, когда к его электродам приложено напряжение обратной полярности Uобр (плюс к катоду, минус к аноду) , - непроводящее состояние в обратном направлении. Режим полупроводникового прибора с четырехслойной структурой при подаче напряжения обратной полярности определяется запирающими свойства¬ми р-п перехода J1 (рис. 1.а). Таким образом, обратная ветвь вольт-амперной характеристики фактически определяет режим перехода J1, включенного в об¬ратном направлении, и имеет такой же вид, как и обратная ветвь характерис- тми обычного кремниевого диода. Обратный ток Iобр мал и примерно равен теку в закрытом состоянии. Если увеличивать (по абсолютному значению) 'напряжение Uoбp, то при некотором его значении Uпроб, называемым обрат¬ным напряжением пробоя (точка а на участке 4), наступает пробой перехода I1, который может привести к разрушению прибора. Поэтому пода¬вать на полупроводниковые приборы с четырехслойной структурой даже на короткое время обратное напряжение, близкое к Uпроб , недопустимо. Наибольшее обратное напряжение, которое может выдерживать прибор, указывается в его паспортных данных и при эксплуатации не должно превышаться.

Рассмотрим теперь семейство статических вольт-амперных характеристик тринистора, изображенное на рис. 5,6. Изменяемым параметром семейства явля¬ется значение тока Iy в цепи управляющего электрода.

Вольт-амперная характеристика при токе Iy=0, по существу, представляет собой характеристику динистора и обладает всеми особенностями, рассмотрен¬ными выше. При подаче управляющего тока и его последующем увеличении (I"'y>I''y>I'y>Q) участки I и 2 характеристики укорачиваются, а напряже¬ние переключения снижается (U"пркIуд, поэтому после включения тринисторов VS1 и VS2 при кратковременном нажатии кнопок S4 и S3 соответственно эта приборы остаются в проводящем состоянии. После нажатия кнопки S0 включа¬ется тринистор VS3, напряжение источника питания Uпит через замкнутые кон¬такты выключателя SA1 и кнопки S10 подается на обмотку электромагнита YA1, при этом одновременно загорается сигнальная лампа HL1. Электромагнит втя¬гивает сердечник и таким образом открывает замок двери. При открывании двери контакты выключателя SA1 размыкаются и разрывают цепь питания, тринисторы вновь выключаются, и после закрывания двери устройство возращается в исходное состояние .

Тринистор VS4 служит для того, чтобы исключить возможность открыть замок подбором кода. Контакты кнопок, не использованных в коде, соединены между собой и подключены к управляющему электроду тринистора VS4. Ес¬ли при попытке подобрать код будет нажата любая из этих кнопок, то тринистор VS4 откроется и замкнет цепь управления тринисторов VS1-VS3, и тогда ни один из них уже невозможно будет включить. Сопротивление резис¬тора R6 рассчитывается по формуле Uпит/R6>Iуд поэтому тринистор VS4 по¬сле отключения остается в проводящем состоянии. Такой же результат будет и при одновременном нажатии всех кнопок, так как тринистор VS4 откроется раньше, чем три последовательно соединенных тринистора VS1-VS3. Полезно обратить внимание на то, что этому обстоятельству способствует также и боль¬шее значение управляющего тока прибора VS4 по сравнению с тринисторами VS1-VS3. Чтобы устройство возвратить в исходное состояние после включения тринистора VS4, следует нажать кнопку S10 «Вызов», контакты которой раз¬рывают цепь питания тринистора VS4, и последний закрывается. Одновременно замыкающие контакты этой кнопки включают звонок HA1 звуковой сигнализа¬ции. Кстати, этой кнопкой можно пользоваться просто как кнопкой звонка,

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»