Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Радиоэлектроника /

Расчет тонкопленочного конденсатора

Документ 1 | Документ 2 | Документ 3 | Документ 4 | Документ 5 | Документ 6 | Документ 7 | Документ 8

←предыдущая  следующая→
1 2 



Скачать реферат


ПРОЕКТИРОВАНИЕ ПЛЕНОЧНЫХ КОНДЕНСАТОРОВ

В некоторых типах гибридных ИМС наряду с резисторами наиболее распространенными пассивными элементами являются пленочные конденсаторы, которые во многом определяют схемо¬технические и эксплуатационные характеристики ИМС. Так, качество и надежность большинства линейных гибридных ИМС в значительной мере зависят от качества и надежности тонкопленочных конденсаторов, что определяется их конструкцией и технологией изготовления.

Конструктивно-технологические особенности и основные пара¬метры. В гибридных ИМС применяют тонкопленочные и толстопленочные конденсаторы с простой прямоугольной (квадратной) и сложной формами (рис. 1). Пленочный конденсатор представ¬ляет собой многослойную структуру, нанесенную на диэлектри¬ческую подложку (рис. 1, а). Для ее получения на подложку 1 последовательно наносят три слоя: проводящий 2, выполняющий роль нижней обкладки, слой диэлектрика 3 и проводящий слой 4, выполняющий роль верхней обкладки конденсатора.

в)

Рис. 1. Конструкции пленочных конденсаторов с обкладками прямоуголь¬ной формы (а) в виде пересекающихся проводников (б) и «гребенки» (в)

Пленочные конденсаторы характеризуются совокупностью следующих параметров: номинальным значением емкости С; допуском на емкость ±6С; рабочим напряжением Up; доброт¬ностью Q или тангенсом угла потерь ; сопротивлением утечки , коэффициентом остаточной поляризации , температурным коэффициентом емкости ТКС; коэффициентом старения ; диапазоном рабочих частот ; интервалом рабочих температур ; надежностью и др.

Конкретные значения этих параметров зависят от выбора используемых материалов для диэлектрика и обкладок, техноло¬гического способа формирования самой структуры и конструк¬ции. Конструкция конденсатора должна обеспечивать воспроиз¬водимость параметров при минимальных габаритах в процессе изготовления и совместимость изготовления с другими элемен¬тами.

Конструкция (рис. 1, а), в которой контур верхней обкладки вписывается в контур нижней обкладки, предназначена для реализации конденсаторов повышенной емкости (сотни - тысячи пикофарад). Ее особенностью является то, что несовмещение контуров обкладок не сказывается на воспроизведении емкости (для устранения погрешности из-за площади вывода верхней обкладки предусмотрены компенсаторы 5), а распространение диэлектрика за контуры обеих обкладок гарантирует надежную изоляцию обкладок при их предельном несовмещении.

Для конденсаторов небольшой емкости (десятки пикофарад) целесообразна конструкция (рис. 1, б) в виде пересекающихся проводников одинаковой ширины, разделенных слоем диэлектри¬ка. Емкость конденсатора данной конструкции нечувствительна к смещению обкладок из-за неточности их совмещения.

Для реализации высокочастотных конденсаторов применяют гребенчатую конструкцию (рис. 1, в), в которой обкладки име¬ют форму гребенчатых проводников, а диэлектрик является составным типа «подложка — воздух» или «подложка — диэлек¬трическое покрытие».

Значение емкости пленочного конденсатора определяют по известной формуле

где — относительная диэлектрическая проницаемость диэлек¬трика; S—площадь перекрытия диэлектрика обкладками; d— толщина диэлектрика.

Для конденсаторов многослойной структуры, состоящей из последовательно нанесенных диэлектрических и проводящих слоев, емкость

где п — количество диэлектрических слоев.

Подобно материалу резистивной пленки слой диэлектрика, параметры и d которого определяют емкость конденсатора, с точки зрения технологичности, воспроизводимости и стабиль¬ности свойств характеризуется оптимальным отношением для каждого материала и способа его нанесения. Поэтому ем¬кость С конденсатора удобно выражать через удельную емкость

где Co=0,0885 /d—постоянная величина для каждого мате¬риала.

Как следует из ( ), для изготовления конденсаторов с малой занимаемой площадью необходимо применять материалы, характеризующиеся максимальным значением Со, т. е. материалы с максимальной диэлектрической проницаемостью и минимальной толщиной d. Однако минимальная толщина d диэлектриче¬ского слоя даже в случае выполнения требований по технологич¬ности и воспроизводимости ограничена значением рабочего на¬пряжения на конденсаторе.

Известно, что электрическая прочность конденсатора опреде¬ляется выражением

где — напряженность электрического пробоя диэлектрика (постоянная величина для каждого материала).

Следовательно, для обеспечения нормальной работы конден¬сатора необходимо, чтобы

, что возможно при соответ¬ствующем выборе толщины диэлектрика. Минимальную толщину диэлектрика определяют из выражения ( ), если :

где —коэффициент запаса, принимаемый равным 2—3 для большинства структур пленочных конденсаторов.

Поэтому рабочее напряжение конденсатора обеспечивает¬ся выбором соответствующего материала диэлектрика с опреде¬ленным значением и необходимой толщиной диэлектрического слоя d.

Допуск, на номинальную емкость С определяется относитель¬ным изменением емкости С конденсатора, обусловленным произ¬водственными погрешностями и дестабилизирующими факторами из-за изменения температуры и старения материалов. В процессе изготовления пленочного конденсатора возможен разброс его удельной емкости Со и геометрических размеров обкладок. Из выражений ( ) и ( ) следует, что максимальное значение технологической погрешности емкости

где — абсолютные погрешности воспроизведения ди¬электрической проницаемости, толщины диэлектрика и площади конденсатора соответственно.

Поскольку воспроизведение удельной емкости Со и площа¬ди S конденсатора достигается взаимно независимыми техноло¬гическими операциями, математическое ожидание относительного отклонения емкости и относительное среднеквадратическое отклонение емкости определяются выраже¬ниями

где — относительные и абсолютные среднеквадратические отклонения удельной емкости и площади.

Погрешность воспроизведения удельной емкости Со зависит от технологических факторов нанесения слоя диэлектрика, а по¬грешность воспроизведения площади S кроме технологических факторов зависит от конструкции конденсатора и формы обкла¬док. В общем случае

где — относительные среднеквадратические отклонения ли¬нейных размеров А и В, определяющих площадь S=AB; — коэффициент корреляционной связи между отклонениями разме¬ров А и В.

Когда размеры А и В верхней обкладки конденсатора, пло¬щадь которой определяет его емкость, формируются в процессе одной технологической операции (рис. 1 а),

Для конструкции рис. 1 б емкость конденсатора определяется площадью перекрытия диэлектрика обеими обкладками, линей¬ные размеры которых формируются независимо,

Следует отметить, что существенно зависит также от фор¬мы верхней обкладки конденсатора (рис. 1 , а). При

где —коэффициент формы обкладок (при квадратной форме обкладок, когда А =В и

, значение минимально).

При этом значение , вычисляемое по ( ), не должно превышать максимально допустимого, т.е.

Отсюда следует, что при выбранном из топологических соображений значении

площадь верхней обкладки

Выражение ( ) может быть использовано для определения максимального значения

исходя из обеспечения требуемой точности конденсатора:

В данном случае при заданной технологии значение определяется из формулы для полной относительной погрешно¬сти емкости ус конденсатора:

Здесь —относительная погрешность удельной емко¬сти в условиях конкретного производства (зависит от материала и погрешности воспроизведения толщины диэлектрика);

— относительная погрешность площади (зависит от фор¬мы, площади и погрешности линейных размеров обкладок);

—относительная температурная погрешность (зависит в ос¬новном от ТКС материала диэлектрика); —относительная погрешность, обусловленная старением пленок конденсатора (зависит от материала и метода защиты).

Добротность Q пленочного конденсатора обусловлена потеря¬ми энергии в конденсаторе:

где — тангенс угла диэлектрических потерь в конденсаторе, диэлектрике, обкладках и выводах соответственно. Потери в диэлектрике обусловлены свойствами материала диэлектрика на определенной частоте f и определяются суммой миграционных и дипольно-релаксационных потерь:

где — удельное сопротивление пленки диэлектрика; — время релаксации; — значения относительной диэлектрической постоянной на высоких и низких частотах.

Тангенс угла в обкладках и выводах конденсатора

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»