Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Схемотехника /

Изготовление технологического процесса изготовления лампы накаливания общего назначения типа В 220 -25

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 



Скачать реферат


нити, тем больше света излучает лампа и, тем самым, быстрее протекает процесс испарения вольфрама и сокращается срок службы.

2. РАСЧЁТНАЯ ЧАСТЬ

2.1 Расчёт времени отжига

Для расчёта времени отжига нам необходимо знать верхнюю и нижнюю границу отжига, а также термостойкость стекла. Эти данные можно взять из таблицы №2.1

Табл. №2.1

Группа стекла Марка стекла Верхняя граница отжига Tв, 0С Нижняя граница отжига Tн, 0С Термостойкость, T, 0С

Вольфрамовая СЛ 40 550 430 200

Молибденовая СЛ 52 535 410 180

Платинитовая СЛ 96 520 410 110

СЛ 97 505

Для изготовления лампы накаливания общего назначения В 220 – 25 используют марку стекла СЛ 96-1. Следовательно, верхняя граница отжига Тв = 520 0С, нижняя граница – Тн = 410 0С, термостойкость - Т = 110 0С, толщина стенки лампы а = 0,1 см.

Отжиг лампы складывается из следующих операций: нагрев (1), отжиг (2), постепенное охлаждение (3) и быстрое охлаждение (4) (рис. 2.1).

Для того чтобы найти общее время отжига нужно знать время этих операций. Для этого с помощью формул (2.1), (2.2), (2.3), найдем сначала скорости нагрева (С1) и скорости охлаждения (С3 и С4), скорость второй операции С2 = 0

, (2.1)

, (2.2)

, (2.3)

где: скорости нагрева и охлаждения, 0С/мин.

Проведём расчёты по этим формулам:

С1 = (0,3/0,12)*110; С1 = 3300 0С/мин

С3 = (0,075/0,12)*110; С3 = 825 0С/мин

С4 = (0,5/0,12)*110; С4 = 5500 0С/мин

Теперь, зная значение C1 , C3 , C4 можно найти время этих операций по следующим формулам:

, (2.4)

, (2.5)

, (2.6)

, (2.7)

Найдём значения времени для каждой операции:

t1 = (520 – 25)/3300; t1 = 0.15 мин

t2 = 10 + 10*0.12; t2 = 10.1 мин

t3 = (520 – 410)/825; t3 = 0.13 мин

t4 = (410 – 25)/5500; t4 = 0.07 мин

Следовательно, общее время обжига можно рассчитать по формуле:

t = t1 + t2 + t3 + t4 , (2.8)

t = 0.15 + 10.1+0.13+0.07; t = 10.45 мин

На основании этих данных построим график зависимости времени отжига колбы от температуры (рис. 2.2)

2.2 Расчёт времени заварки ламп.

Заварка ламп является основной сборочной операцией при изготовлении ламп. Она заключается в герметичном соединении собранной ножки с колбой. Процесс заварки ламп заключается в постоянном разогреве стекла горла колбы до температуры обработки. Подробнее об этом процессе написано в пункте 3.10 данного курсового проекта.

Для расчёта времени необходимого для проведения заварочной операции пользуются следующими формулами:

1) количество теплоты, передаваемое поверхности стекла изделия от газовой горелки определяется:

Qист = ( Tист – Тст)*F* 

где:  - коэффициент стеклоотдачи, кал*см2*с*К;

Тист – температура источника нагрева, 0С;

Тст – температура стекла,0С;

F – площадь, 0С;

 - время нагрева, с.

2) количество теплоты, которое проходит от наружной поверхности стекла к внутренней в результате теплопроводности:

Q’ = *( Tст’ – Tст’’) *F*a , (2.10)

где:  - коэффициент теплопроводности, кал*с-1*К-1*см-1;

Тст’ – температура внешней поверхности стенки, 0С;

Тст’’ – температура внутренней поверхности изделия, 0С;

а – толщина стенки изделия, см.

3) количество теплоты, необходимое для нагрева изделия:

Qт = m*c*( T – T0 ), (2.11)

где: m – масса нагреваемого стекла, г;

с – удельная теплоёмкость, кал*г-1*К-1;

Т – температура до которой необходимо нагреть изделие, 0С;

Т0 – температура окружающей среды, 0С.

3) Количество теплоты, которое подходит к внутренней поверхности стекла должно быть равно количеству, необходимому для нагрева:

Qт = Q’ (2.12)

Из уравнения (2.12) можно найти время заварки:

 

Площадь поверхности F находится по следующей формуле:

F = dг*h , (2.14)

где: dг – диаметр горловины, см;

h – ширина зоны заварки, см.

Объём колбы рассчитывается по формуле (2.15)

(2.15)

Найдём из формул (2.14) и (2.15) объём и площадь:

F = 3.14*3.6*0.3; F = 3.39 см2

V = 3.14* 0.3*(3.62 – (3.6 – 0.1)2)/4; V = 0.167 см3

Массу стекла можно найти по следующей формуле:

m = V, (2.16)

где:  - плотность стекла, г/см3

Масса стекла будет равна:

m = 2.5*0.167; m = 0.418 г

Подставляя в формулу (2.13) данные, получаем:

 = 0.418*0.15*(1000-25)*0.1/0.0019*(1000-900)*3.39;  = 9,49 с.

3. ТЕХНОЛОГИЧЕСК АЯ ЧАСТЬ

3.1 Схема технологического процесса

Рис. 3.1 Схема технологического процесса изготовления лампы накаливания

3.2 Изготовление вводов

Важными заготовительными операциями в электроламповом производстве являются операции по изготовлению вводов и цоколей для ламп. При этом используются различные способы обработки металлических деталей.

Ввод является конструктивным элементом источника света, предназначенным для электрического соединения цепей от внешнего источника питания с электродами (телом накала, катодом, анодом), помещёнными внутри колбы лампы.

Вводы должны удовлетворять следующим требованиям: быть достаточно простыми в конструктивном отношении, технологичными, иметь достаточную механическую прочность, обеспечивать пропускание электрического тока требуемой силы и вакуумную плотность соединения со стеклом во всём диапазоне температур при изготовлении и работе лампы.

Конструкция и материалы ввода определяются маркой стекла, а также типом источника света – его мощностью, областью применения, конструкцией и т.п. Вводы могут быть однозвенными, состоящими из одного металла или сплава, взятого в виде отрезка прутка, проволоки или ленты, или многозвенными, состоящими из двух или более звеньев – отрезков разнородных металлов или сплавов.

Однозвенные вводы применяются для миниатюрных, сверхминиатюрных, самолётных, сигнальных и некоторых других специальных ламп. Многозвенные, в основном, трёхзвенные, вводы широко применяются для массовых ламп, а также многих типов ламп специального назначения.

Изготовление платинитовых вводов.

Платинитовые вводы изготавливаются из отдельных отрезков проволок с помощью газовой или электрической сварки. Рассмотрим отдельно технологический процесс электросварки вводов.

Электрическая (конденсаторная сварка) – это вид сварки, являющийся наиболее массовым и распространённым при изготовлении вводов.

Автомат электросварки типа ЛА-8 представляет собой четырёхпозиционную машину последовательного действия, в которой позиционный барабан переносит одно из звеньев ввода из позиции в позицию, и к нему поочерёдно привариваются другие звенья.

Процесс сварки осуществляется путём оплавления соударяющихся концов двух проволок энергией разряда батареи конденсаторов. При ударной сварке свариваемые детали сначала включаются под электрическое напряжение сварочной установки, а затем производится соударение обеих деталей. Процесс ударной сварки делится на три последовательно протекающие стадии.

В первой стадии при соударении свариваемых деталей возникает ток короткого замыкания, который производит мгновенный интенсивный разогрев свариваемых поверхностей с резким возрастанием давления и взрывообразном выплеском мелких металлических капель.

Во второй стадии происходит оплавление свариваемых поверхностей обеих деталей дуговым разрядом. Дуговой разряд продолжается до вторичного соприкосновения свариваемых деталей, наступающего после того, как сила подачи подвижной детали преодолеет силу отдачи.

Таким образом, с наступлением вторичного соприкосновения свариваемых

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 



Copyright © 2005—2007 «Mark5»