Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Схемотехника /

Операционные усилители

←предыдущая следующая→
1 2 3 



Скачать реферат


показано ниже, операционный усилитель, предназначенный для универсального применения, из соображений устойчивости должен иметь такую же частотную характеристику, что и фильтр нижних частот первого порядка (инерционное звено), причем это требование должно удовлетворяться по крайней мере вплоть до частоты единичного усиления fт, т.е. такой частоты, при которой |KU| =1. На рис. 3 представлена типичная логарифмическая амплитудно-частотная характеристика (ЛАЧХ) скомпенсированного

Рис. 3. Типичная ЛАЧХ операционного усилителя

операционного усилителя. В комплексной форме дифференциальный коэффициент усиления такого усилителя выражается формулой:

Здесь KU - дифференциальный коэффициент усиления ОУ на постоянном токе. Выше частоты fп, соответствующей границе полосы пропускания на уровне 3 дБ, модуль коэффициента усиления KU обратно пропорционален частоте. Таким образом, в этом диапазоне частот выполняется соотношение

|KU| f = |KU| fп = fт

На частоте fт модуль дифференциального коэффициента усиления |KU| = 1. Как следует из последнего выражения, частота fт равна произведению коэффициента усиления на ширину полосы пропускания.

1.3. Основные схемы включения операционного усилителя

ДИФФЕРЕНЦИАЛЬНОЕ ВКЛЮЧЕНИЕ

Рис. 4. Дифференциальное включение ОУ

На рис. 4 приведена схема дифференциального включения ОУ. Найдем зависимость выходного напряжения ОУ от входных напряжений. Вследствие свойства а) идеального операционного усилителя разность потенциалов между его входами p и n равна нулю. Соотношение между входным напряжением U1 и напряжением Up между неинвертирующим входом и общей шиной определяется коэффициентом деления делителя на резисторах R3 и R4:

Up = U1R4/(R3+R4) (3)

Поскольку напряжение между инвертирующим входом и общей шиной Un = Up, ток I1 определится соотношением:

I1 = (U2 - Up) / R1 (4)

Вследствие свойства c) идеального ОУ I1=I2. Выходное напряжение усилителя в таком случае равно:

Uвых = Up – I1R2 (5)

Подставив (3) и (4) в (5), получим:

.

(6)

При выполнении соотношения R1R4 = R2R3,

Uвых = (U1 – U2)R2 / R1 (7)

ИНВЕРТИРУЮЩЕЕ ВКЛЮЧЕНИЕ

При инвертирующем включении неинвертирующий вход ОУ соединяется с общей шиной (рис. 5).

Рис. 5. Инвертирующее включение ОУ

(8)

Таким образом, выходное напряжение усилителя в инвертирующем включении находится в противофазе по отношению ко входному. Коэффициент усиления входного сигнала по напряжению этой схемы в зависимости от соотношения сопротивлений резисторов может быть как больше, так и меньше единицы.

НЕИНВЕРТИРУЮЩЕЕ ВКЛЮЧЕНИЕ

При неинвертирующем включении входной сигнал подается на неинвертирующий вход ОУ, а на инвертирующий вход через делитель на резисторах R1 и R2 поступает сигнал с выхода усилителя (рис. 6). Здесь коэффициент усиления схемы K найдем, положив в (6)

U2 = 0, R3 = 0, R4 бесконечно велико. Получим:

.

(9)

Рис. 6. Неинвертирующее включение ОУ

Как видно, здесь выходной сигнал синфазен входному. Коэффициент усиления по напряжению не может быть меньше единицы. В предельном случае, если выход ОУ накоротко соединен с инвертирующим входом, этот коэффициент равен единице. Такие схемы называют неинвертирующими повторителями и изготавливают серийно в виде отдельных интегральных микросхем, содержащих по нескольку усилителей в одном корпусе. Входное сопротивление этой схемы в идеале - бесконечно. Ниже будет показано, что у повторителя на реальном операционном усилителе это сопротивление конечно, хотя и весьма велико.

1.4. ВНУТРЕННЯЯ СТРУКТУРА ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

Для достаточной устойчивости и выполнения математических операций над сигналами с высокой точностью реальный операционный усилитель должен обладать следующими свойствами:

1) высоким коэффициентом усиления по напряжению, в том числе и по постоянному;

2) малым напряжением смещения нуля;

3) малыми входными токами;

4) высоким входным и низким выходным сопротивлением;

5) высоким коэффициентом ослабления синфазной составляющей (КОСС);

6) амплитудно-частотной характеристикой с наклоном в области высоких частот -20дБ/дек.

ОУ должен быть с высоким коэффициентом усиления по напряжению и, следовательно, содержать несколько каскадов усиления напряжения. Как будет показано ниже, с ростом числа каскадов усиления напряжения увеличивается опасность нарушения устойчивости ОУ с обратными связями и усложняются цепи коррекции. Даже усилители с тремя каскадами усиления напряжения (например, 140УД2, 153УД1, 551УД1) имеют сложные схемы включения, и разработчики стараются их не применять. Это вызывает необходимость применения усилительных каскадов с очень высоким коэффициентом усиления по напряжению. Большие трудности проектирования усилителей постоянного тока связаны также со смещением нуля ОУ.

Смещение нуля ОУ проявляется в том, что при входном дифференциальном напряжении, равном нулю, выходное напряжение не равно нулю. Обычно определяют смещение нуля, приведенное ко входу, как такое дифференциальное напряжение, которое нужно приложить ко входу усилителя, чтобы его выходное напряжение было бы равно нулю. Смещение нуля по сути является аддитивной погрешностью выполнения математических действий ОУ над входными сигналами. Смещение нуля может иметь существенные температурный и временнoй дрейфы. Операционные усилители на дискретных транзисторах имели неудовлетворительное смещение нуля, связанное с неидентичностью транзисторов. Только применение и усовершенствование интегральной технологии, позволившей изготавливать парные транзисторы дифференциального каскада в едином производственном цикле и на расстоянии несколько микрон друг от друга, привело к существенному снижению смещения нуля и дрейфов.

Блок-схема операционного усилителя, в большой мере удовлетворяющего требованиям, предъявляемым к ОУ, приведена на рис. 7.

Рис. 7. Структурная схема ОУ

Первый каскад определяет важнейшие точностные параметры ОУ, такие, как напряжение смещения нуля, коэффициент ослабления синфазной составляющей, входные токи и входное сопротивление, поэтому он выполняется по схеме дифференциального усилителя (рис. 8).

Рис. 8. Схема простейшего дифференциального усилительного каскада

Коэффициент усиления по дифференциальному напряжению каскада определяется выражением:

,

(10)

где rэ - динамическое сопротивление эмиттера транзистора. Дифференциальное напряжение обычно усиливается таким каскадом не более, чем в 100 раз.

Для того, чтобы определить коэффициент усиления синфазного сигнала, на оба входа усилителя нужно подать одно и то же напряжение uвх. В этом случае оба транзистора со своими коллекторными нагрузками включены по существу параллельно. Через резистор Rэ протекают оба эмиттерных тока. Поэтому

.

(11)

Сопротивление rэ обычно много меньше Rэ и им пренебрегают. Коэффициент ослабления синфазного сигнала (КОСС) определяется как отношение

Пример: В дифференциальном каскаде использованы транзисторы с сопротивлением эмиттера rэ = 250 Ом. Сопротивления резисторов Rк=Rэ=75 кОм. В этом случае Кдиф=150, Ксинф=0,5, КОСС=300. При питании от источников +/-15 В ток покоя цепей коллекторов равен 100 мкА при напряжении на коллекторах относительно общей точки 7,5 В.

Повысить параметры дифференциального усилителя в принципе можно простым увеличением сопротивлений резисторов Rк и Rэ, но при этом уменьшится ток покоя транзисторов и, как следствие, ухудшится температурная и временнa я стабильность усилителя. Эффективный путь улучшения характеристик усилителя состоит в замене линейных резисторов источниками тока, обладающими высоким динамическим сопротивлением при достаточно больших токах. В частности, в качестве динамической нагрузки в цепи коллекторов транзисторов дифференциального усилителя широко используется так называемое токовое зеркало, схема которого показана на рис. 9.

Рис. 9. Схема токового зеркала

При таком включении Uкэ=Uбэ>Uкэ.нас. Следовательно, транзистор VТ1 ненасыщен. Поскольку Uбэ1=Uбэ2, то при хорошо согласованных по параметрам транзисторах Iб1=Iб2=Iб и Iк1=Iк2=BIб, где B - статический коэффициент передачи тока. При этом

Iвх= BIб +2Iб и Iвых= BIб

Отсюда

Iвых= BIвх/(B+2) Iвх

1.5. СТАНДАРТНАЯ СХЕМА ОПЕРАЦИОННОГО УСИЛИТЕЛЯ

Операционные усилители универсального применения должны обеспечивать значительно больший дифференциальный коэффициент усиления, чем способен дать один каскад. Поэтому они строятся в основном по двухкаскадной схеме. Упрощенная схема "классического" двухкаскадного ОУ А741 (полная схема включает 24 транзистора) приведена на рис. 10.

Входной каскад выполнен по схеме дифференциального усилителя на p-n-p транзисторах VТ1 и VТ2. В качестве нагрузки использовано токовое зеркало на n-p-n транзисторах VТ3 и VТ4. Для выходного тока входного каскада, следовательно, можно записать следующее соотношение:

Iд= Iк2 -Iк1

Рис. 10. Упрощенная схема двухкаскадного ОУ А741

Благодаря тому, что выходным сигналом дифференциального каскада является разностный ток, синфазные

←предыдущая следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»