Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Схемотехника /

Основы цифровой техники

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 



Скачать реферат


инверсное произведение или оптимальная инверсная сумма.

Пример 7. Спроектировать схему КЦУ равнозначности двух переменных а) в ОФПН ЛЭ, б) в монофункциональном наборе ЛЭ «И -НЕ», в) в монофункциональном наборе ЛЭ «ИЛИ -НЕ».

Решение. Основой для проектирования являются выражения (8), (8.1) и (8.2) соответственно. Схемы КЦУ, реализующие функцию “равнозначность двух переменных”, приведены на рис.7.

1.10 Проектирование многовыходных КЦУ

На практике часто встречается необходимость проектирования КЦУ, имеющих несколько (m) выходов. В этих случаях для синтеза схемы устройства можно воспользоваться рассмотренной выше последовательностью действий, если представить устройство в виде совокупности соответствующего числа (m) КЦУ, имеющих общие входы. Другими словами, проектирование многовыходного КЦУ сводится к синтезу m одновыходных схем КЦУ, имеющих общие входы х1, х2, …, хn, выходы которых в совокупности образуют выходы устройства: у1, у2, …, уm.

Пример 8. Спроектировать схему КЦУ, вычисляющего значения функции у=х2+3, если х может принимать целые значения в диапазоне от 0 до 3.

Решение. Представим функцию, подлежащую реализации в виде таблицы (рис.8.)

В проектируемом устройстве как аргумент х, так и функция у должны быть представлены в виде двоичных кодов. Перевод х и у в двоичные коды осуществляется по известным правилам преобразования десятичных чисел в двоичные коды. Число разрядов n и m, необходимых для представления х и у в двоичном коде, определяется согласно соотношениям:

n ≥ log2(xmax+1), m ≥ log2(ymax+1). (9)

Из (9) находим число двоичных разрядов, необходимых для представления аргумента х и функции у в виде ближайших больших целых чисел:

n ≥ log2(3+1)=2, m ≥ log2(12+1)=4.

Таким образом, проектируемое устройство должно иметь два входа, на которые поступают двоичные разряды аргумента х1 и х2 и четыре выхода, на которых формируются двоичные разряды функции у1, у2, у3, у4 (рис.9, а). Для получения уравнений связи выходных переменных (реакций) с входными переменными (воздействиями) изобразим таблицу истинности (функционирования) устройства (рис. 9, б).

х2

х1 у4 у3 у2 у1

21 20 23 22 21 20

0

0

1

1 0

1

0

1 0

0

0

1 0

1

1

1 1

0

1

0 1

0

1

0

а) б)

Рис. 9. Условное графическое изображение (а)

и таблица функционирования (б) проектируемого устройства

Из таблицы функционирования для каждого выхода уi (i=1, 2, 3, 4) получим уравнения связи в виде СДНФ:

,

,

.

Упростим (минимизируем) полученные выражения (выражение для у4 не упрощается):

,

, (10)

.

По полученным МДНФ (10) синтезируем схему устройства, используя ОФПН ЛЭ (рис. 10).

Рис. 10. Схема КЦУ, вычисляющего значения функции у=х2+3,

(область определения х: 0, 1, 2, 3)

2. Задание на лабораторную работу

2.1. Для каждого КЦУ, предусмотренного заданием (см. табл. 1):

2.1.1. Составить таблицу истинности;

2.1.2. Составить логические выражения функций, реализуемых КЦУ, представленные в СДНФ и СКНФ. Доказать тождественность этих форм.

2.1.3. Минимизировать при возможности полученные выражения, т.е. получить выражения для МДНФ используя: а) метод непосредственных преобразований; б) карт Карно.

2.1.4. Преобразовать полученные в п. 2.1.3. МДНФ к виду, реализуемому в монофункциональном базисе ЛЭ «И-НЕ».

2.1.5. Составить схему КЦУ, используя: а) ЛЭ ОФПН; б) монофункционального набора ЛЭ «И- НЕ».

2.1.6. Собрать схемы КЦУ на стенде и проверить правильность их функционирования.

Примечание: пункты 2.1.1 – 2.1.5 задания должны быть выполнены дома.

Таблица 1

Функция,

реализуемая КЦУ № бригады

1 2 3 4 5

1. Неравнозначность двух переменных

2. Голосования (мажоритарного контроля) «2 из 3»

3. Равнозначности трех переменных

4. Четности числа «1» в трехразрядном двоичном слове

5. Нечетности числа «1» в трехразрядном двоичном слове

6. Вычисление значений функции у= , (х принимает целые значения в диапазоне от 0 до 4), A - № бригады. +

+

+

+

+

+

+

+

+

+

3. Содержание отчета

Для каждого спроектированного и исследованного в соответствии с заданием КЦУ должны быть приведены:

3.1. Таблица истинности и логические выражения функции, реализуемых КЦУ, представленные в СДНФ и СКНФ.

3.2. Карты Карно, отражающие ход минимизации логических функций.

3.3. Преобразования, иллюстрирующие переход от МДНФ к оптимальному инверсному произведению.

3.4. Схемы КЦУ, реализованные в ОФПН ЛЭ и монофункциональном наборе ЛЭ «И-НЕ».

4. Контрольные вопросы

1. Основные постулаты (аксиомы) и законы алгебры логики.

2. Понятия минтермов и макстермов. Дизъюнктивные и конъюнктивные нормальные формы представления функций.

3. Понятия смежных минтермов, операции их склеивания, импликант.

4. Минимизация логических функций с помощью карт Карно.

5. Понятие функционального полного набора (ФПН). Примеры ФПН.

6. Последовательность (алгоритм) приведения МДНФ к виду, реализуемому в монофункциональном наборе ЛЭ,

7. Реализовать в монофункциональном наборе ЛЭ «И-НЕ» логические функции: инверсия, дизъюнкция трех переменных, конъюнкция трех переменных.

8. Реализовать в монофункциональном наборе ЛЭ «ИЛИ -НЕ» логические функции: инверсия, дизъюнкция трех переменных, конъюнкция трех переменных.

9. Оцените аппаратурные затраты (количество ИС), потребные для реализации КЦУ «равнозначность двух переменных» а) в ОФПН ЛЭ, б) в монофункциональных наборах ЛЭ. Какое схемотехническое решение является предпочтительным?

10. В чем суть операции доопределения логической функции?

11. Сколько входов и выходов должно иметь цифровое устройство, вычисляющее значение функции y= 0.5•x+4, если х может принимать целые значения в диапазоне от 0 до 10?

12. Какого типа ЛЭ необходимы для построения схемы, реализующей логическую функцию y= x1•x2+x1•x3+x2•x3? Укажите потребное количество ЛЭ и ИС.

Лабораторная работа 3

ПРОЕКТИРОВАНИЕ И ИССЛЕДОВАНИЕ ДЕШИФРАТОРОВ

Цель работы: изучение принципов проектирования дешифраторов в заданном базисе логических элементов, а также исследование функционирования спроектированных дешифраторов и интегральных схем дешифраторов.

1. Теоретические основы лабораторной работы

Дешифратором (декодером) называется цифровое устройство комбинационного типа, осуществляющее преобразование n-разрядного двоичного кода в m-разрядный унитарный код.

Унитарный код (код «1 из m») может быть прямым (одна «1» в некотором разряде m-разрядного двоичного кода и m-1 нулей) или обратным (один «0» и m-1 единиц).

Примеры записи унитарного кода для m=8:

прямого – 0001 0000, 0100 0000, ...

обратного – 1101 1111, 0111 1111, ...

Схема дешифратора имеет n входов, на которые поступают соответствующие разряды двоичного кода хn, xn-1, …, x2, x1 и m выходов, на которых формируются разряды унитарного кода уm-1, ..., у1, у0. При этом дешифратор реализует m функций вида:

(1)

Функции (1) соответствуют преобразованию двоичного кода в прямой унитарный код и могут быть записаны в виде:

(2)

Такой системе уравнений соответствует таблица истинности (табл.1).

Изло¬же¬нное выше соответствует полному дешифратору, т.е. дешифратору, для которого m=2n. На практике часто встречаются неполные дешифраторы, для которых m2n, следовательно, реализующие лишь некоторые из функций (2). Из (2) и таблицы истинности следует, что каждой комбинации входных сигналов соответствует активное значение «1» (при преобразовании в прямой унитарный код) только одного определенного выходного сигнала, и неактивные значения «0» остальных m-1 выходных сигналов. Причем номер избранного выхода равен двоичному коду, поданному на входы. Например, если на дешифратор подана входная комбинация, соответствующая первой строке таблицы истинности (табл. 1), т.е. двоичный код нуля, то избранным будет выход с номером 0 (у0); если входная комбинация имеет вид, соответствующий второй строке таблицы истинности

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 



Copyright © 2005—2007 «Mark5»