Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Схемотехника /

Разработка логической схемы управления двустворчатых ворот судоходного шлюза

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 ... 



Скачать реферат


и обеспечение больших передаточных чисел в объемных передачах.

Основными недостатками этих передач являются; сложности прокладки трубопроводных коммуникаций; большие потери давления и утечки жидкости в уплотнениях; зависимость характеристик систем от температуры жидкости и ее

вязкости.

Тяговые органы служат для соединения приводного механизма с ра¬бочим органом, т. е. с воротами или затворами шлюзов.Тяговые органы работают в исключительно тяжелых условиях, особенно в подъемных ме¬ханизмах,где часто они находятся в воде и трудно доступны для обс¬луживания. Учитывая неравномерность нагрузки и тяжелые условия их работы, при проектировании тяговых органов стремятся обеспечить им прочность и надежность.

1.3. Основные свойства электрофицируемых механизмов гидротехни¬ческих сооружений.

Электрифицируемые механизмы гидротехнических сооружений работают в условиях, отличающихся влажностью ( 100 %), большими перепадами температуры ( 20-50оС ),значительными колебаниями нагрузки и дли¬тельными перерывами в работе ( при шлюзовании и особенно в межнави¬гационный период ). Для обеспечения безаварийной работы эти меха¬низмы должны быть достаточно прочными, долговечными и надежными в эксплуатации. Кроме того, они должны иметь высокие технико-экономи¬ческие показатели.

Перечисленные требования распространяются и на электрическое оборудование.

Главные нагрузки, действующие на электроприводы основных меха¬низмов гидротехнических сооружений, создаются:

собственным весом перемещаемых устройств;

давлением воды и ветра на них.

Кроме этого, могут возникнуть случайные нагрузки, вызванные на¬валом свободно плавающих предметов и шлюзуемых судов, обледенением, ледоходом и т. п.

Указанные нагрузки, веса устройств, не остаются неизменными в процессе работ, поэтому все расчеты выполняются для двух возможных их сочетаний: основного и особого. В основное сочетание включают нагрузки, действующие постоянно при работе механизма, в особое - главные и случайные ( удары топляков, заклинивание, ледоход и т. п.). Сочетания нагрузок выбирают в соответствии с практической воз¬можностью одновременного их воздействия как на привод в целом, так и на отдельные его элементы. Нагрузки определяют для статического и динамического режимов работы.

По действующим в системе нагрузкам рассчитывают соответствующие им моменты и суммированием последних вычисляют результирующие мо¬менты сопротивления движению Мс.

При определении момента сопротивления нагрузки от навала свобод¬но плавающих предметов и шлюзуемых судов, а также от обледенения и ледоходов можно не учитывать, пологая их выходящими за пределы мак¬симального момента привода и регламентирующими лишь прочность конс¬трукции электрифицируемого устройства.

При этом например, для двустворчатых ворот с тросовыми, цепными, штанговыми и штангово-цепными передачами моменты ( в Н*м ) от дейс¬твующих нагрузок приближенно будут такими:

а) от веса системы ( момент трения в пяте и гвльсбанде )

Мтр=23Fиfrи+Fгfrг,

где Fг и Fи - реакция в пяте и гальсбане, Н;

f - коэффициент трения;

rи, rг - радиус пяты и гальсбана, м;

б) от гидростатического и гидродинамического давления воды на створку

Мг=0,5Yhl2Dh+0,15rhl2*q2

где Y - вес единицы объема воды, Н/м3;

h - заглубление створки, м;

l - длинна створки, м;

Dh - перепад уровней воды, м; r - плотность воды, кг/м3: q - скорость движения створки, м/с:

в) от действия ветра

Мв=Fвl/2,

где Fв - сила ветра,действующая на створку, Н;

l - длина створки, м.

Момент сопротивления будет равен

Мс=Мтр+Мг+Мв.

В динамическом режиме работы, кроме перечисленного, учитывают дополнительный момент ( в Н*м ) от сил инерции створки:

Ми=Jw/t,

где J - момент инерции створки, кг*м2;

w - угловая скорость движения створки, с-1;

t - время динамического режима, с;

Момент сопротивления движению подъемно-опускных ворот ( затворов ) создается главным образом весом ворот и сопротивлением трения в опорно-ходовых и закладных частях. Составляющие момента сопротивле¬ния ( в Н*м ) можно определить следующим образом:

а) от собственного веса ворот ( затвора )

Мв=GRб,

где G - вес ворот с тяговым устройством, Н;

Rб - радиус барабана подъемной лебедки, м;

б) от трения в опорно-ходовых и закладных частях

Мтр=f1PRб+f2DPRб,

где f1, f2 - коэффициент трения опорного устройства и уплотнения;

P и DP - силы гидростатического давления на ворота и на заклад¬ные части, Н.

При этом Мс=Мв+Мтр. Для привода затворов галерей,кроме указанных нагрузок, учитывают момент, создаваемый вертикальным давлением во¬ды:

Мверт=YSRб( Hв-fоНн ),

где S - площадь затвора,м2;

Hв, Нн - напор на верхнюю и нижнюю ( выпор ) поверхности затво¬ра,м;

fо - коэффициент подсоса.

1.4 Элементы электрического оборудования шлюзов.

Электрическое оборудование, обеспечивающее четкую и надежную ра¬боту гидротехнических сооружений, условно можно разделить на три основных группы: силовое электрооборудование приводов, электричес¬кие аппараты и системы управления, элементы и устройства электрос¬набжения.

1.4.а. Силовое оборудование приводов. К силовому электрооборудо¬ванию прежде всего относят электрические двигатели и электрические приводы тормозов.

Электрические двигатели. К электрическим двигателям гидротехни¬ческих сооружений предъявляются высокие требования в отношении обеспечение нормальной работы в условиях резких колебаний нагрузки, температуры окружающей среды и повышенной влажности. На гидротехни¬ческих сооружениях применялись исключительно крановые электродвига¬тели переменного тока с короткозамкнутым и фазным ротором серии МТК и МТ специального исполнения, обладающие достаточно высокой перег¬рузочной способностью и механической стойкостью. От обычных они от¬личаются тем, что обмотка статора их при изготовлении подвергается вакуумной пропитке изоляционным влагостойким компаундом, а в под¬шипниковых щитах имеются вентиляционные отверстия, предназначенные для предотвращения появления конденсата внутри двигателя.

В настоящее время на гидротехнических сооружениях получают расп¬ространение и крановые двигатели серий МТКВ МТВ с изоляцией класса В, допускающей увеличение номинальной мощности двигателя при преж¬них габаритных размерах.

Из - за отсутствия крановых двигателей необходимой мощности ста¬ли применяться двигатели общепромышленного назначения. Однако эти двигатели менее надежны в эксплуатации, хуже работают в условиях гидротехнических сооружений, обладают меньшей перегрузочной способ¬ностью.

Режим работы двигателей гидротехнических сооружений, как прави¬ло, кратковременный с ярко выраженной цикличностью работы. Продол¬жительность цикла в зависимости от вида сооружения и характера ра¬боты составляет 30 -60 минут. Продолжительность работы двигателей в цикле при этом колеблется от одной до 6 - 8 минут.

Электрические приводы тормозов. Большинство механизмов гидротех¬нических сооружений снабжают тормозами закрытого типа, как правило, колодочными. Тормоза служат для удержания подъемноопускных устройс¬тв в поднятом положении, а поворотных в строго фиксированном поло¬жении. Кроме того, с помощью тормоза можно сократить тормозной путь

- выбег механизма. Особенно высокие требования предъявляются к тор¬моза многодвигателтельных систем, где необходима одинаковая эффек¬тивность действия тормозов для сохранения синхронизации и последо¬вательности движения элементов.

Для приведения в действие механических тормозов применяются длинноходовые электромагниты серии МО и электрогидравлические тол¬катели серии ЭГП.

1.4.б. Электрические аппараты системы управления. Эта группа объединяет аппараты коммутации и защиты, аппараты технологической последовательности и блокировок, контроля и сигнализации. Кроме уп¬равления основными механизмами и процессами, специальные системы этой группы аппаратов обеспечивают информацию о состоянии наиболее ответственных элементов и режимах работы и осуществляют регулирова¬ние движения судов.

Коммутационные аппараты. Для коммутации силовых цепей гидротех-

нических сооружений применяются в основном электромагнитные контак¬торы серии КТ. Бесконтактные ( полупроводниковые ) контакторы тока используют лишь в опытном порядке с тиристорными станциями управле¬ния.

Аппараты защиты. На шлюзах применяются максимальная токовая и минимальная защита. Для максимальной токовой защиты двигателей во¬рот и затворов обычно используют электромагнитные или индукционные реле максимального тока серии РЭ и ИТ, Для защиты от перегрузок электротепловые реле ТР, для минимальной защиты - реле напряжения.

Реле промежуточное используется для подготовки цепей управления к заданным операциям ( например, цикловому или раздельному управле¬нию ). Кроме того, промежуточные реле в некоторых случаях позволяют сократить число контактов, включаемых в цепь управления. Например, вместо того чтобы включить кнопку " Стоп " всех постов управления в цепь управления, можно включить их цепь катушки промежуточного ре¬ле. При нажатии любой из этих кнопок размыкаются контакты этих реле в цепи управления и происходит остановка привода. В качестве проме¬жуточных реле широкое применение находят реле серии РП.

Реле времени служат для управления контакторами ускорения, а также в других случаях, когда

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 ... 



Copyright © 2005—2007 «Mark5»