Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Схемотехника /

Разработка логической схемы управления двустворчатых ворот судоходного шлюза

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 13 14 



Скачать реферат


кг*м2)

Максимальная нагрузка будет в момент времени

t= p/2*?(J1/C'max); где

Мн = 9556*Рн/nн = 9556*19/935 = 132,9 (Н*м).

Условие, для проверки предварительно выбранного двигателя при внезапном стопорении;

wн , M'доп-0,7*Mmax/?(C'max*J1); где

M'доп - допустимая нагрузка на тяговый орган, приведенный к валу двигателя;

M'доп = Fдоп*ОА/(iз*h) =55*104*2/(2300*0,74) = 646,3 ( Н*м )

1,4*M'доп-2,2*Мном/?(C'max*J1) =

= 1,4*646,3-2,2*132,9/?(13,6*0,66) = 165,4 (рад/с)

97 < 165,4 условие выполняется

Коэффициент 1,4 в выражении учитывает податливость препятствия, на которое произведен "наезд" створки.

б) Проверка на динамическую и перегрузочную способности. Провер¬ка предварительно выбранного двигателя на перегрузочную способность и динамическую способности производится исходя из следующих сообра¬жений. Поскольку электромеханические приводы двустворчатых ворот содержат упругое звено ( демпферные пружины ), то при разгоне дина¬мический момент в нем ( М12 ) имеет затухающий колебательный харак¬тер, причем максимальная величина его должна ограничиваться коэффи¬циентом динамичности, равным 1,4. В общем случае, динамический мо¬мент в упругом звене определяется по выражению:

М12 =Мс'+(Мнп-Мс')*J'2/(J1+J'2)*(1-coswt);

где Мнп - начальный пусковой момент двигателя;

J'2 - приведенный к валу двигателя момент инерции створки и при¬соединенной массы воды;

w - частота собственных колебаний системы

Максимальное значение динамического момента будет при coswt = -1; Учитывая, что этот максимальный момент не должен превышать больше чем на 40 %, момент сопротивления Мс', т. е. М12 =1,4*Мс', величина начального пускового момента при пуске из лю¬бого положения определяется по формуле:

Мнп(Q) = Мс'(Q)*(1+0,2*J1+J'2(Q)/J'2); где

J'2(Q) = Jст+Jв(Q)/i2(Q) - приведенный к валу двигателя момент инерции створки и присоединенной массы воды.

Jст = G*l2/38 - момент инерции створки;

Jст = 2676137,5 (кг*м2)

Jвт(Q) - момент инерции присоединенной массы воды при hкт = 18м и hк = 4м

Пересчет для Jв(Q) производится по формуле:

Jв(Q) = Jвт(Q)*h/hк*(hк/hкт)4 = 1,25*Jвт(Q)

Результат вычислений заносим в таблицу.

Q; град 0 10 20 30 40 50 60 70

Jвт107

кг*м2 4,2 2,2 1,85 1,75 1,8 2 2,6 4,2

Jв107

кг*м2 5,25 2,75 2,3 2,2 2,25 2,5 3,25 5,25

J'2

кг*м2 0,38 1,15 1,39 1,58 1,69 1,65 1,49 0,52

Мнп

Н*м 19,5 44,6 58,9 70,2 77,7 220,8 191 130,1

Вычисляем Мнп только для двигательного режима, т. к. соответс¬твующая Мс' для тормозного режима меньше, чем для двигательного. По данным таблицы строим график Мнп= f(Q) ( рис. 21) из таблицы нахо¬дим Мнп max = 220,8 ( Н*м ).

Выполняет проверку по условию:

Мнп мах , 0,8*Mmax, где

0,8 - коэффициент, учитывающий допустимое снижение напряжения сети:

2,5*132,9 = 332,25 . 220,8 следовательно, Мнп max , 2,5*Мном, условие выполнено.

2.3.6.Выбор электрических аппаратов для управления механическими тормозами.

На всех механизмах шлюза для удержания его в застопаренном сос¬тоянии в период бездействия или для замедления движения механизма перед его остановкой используются механические тормоза.Они выполня¬ются непосредственно с электроприводом. В качестве электроприводов (аппаратов) для управления механическими тормозами используются электрогидравлические толкатели и электромагниты переменного и пос¬тоянного тока.

Выбор механического тормоза,а следовательно,и его электропривода производится по необходимому тормозному режиму:

Мт = 2*М'max

Для нахождения М'max необходимо из графика M'с = f(Q) при пере¬паде и ,сопутствующих движению выбрать наибольшее значение момента по абсолютной величине

М'max = 172,5 ( Н*м )

Мт = 2*172,5 = 345 (Н*м)

Выбираем длинноходовой тормозной электромагнит переменного тока КМТЗА.

Тяговое условие-350(Н).

Эти электромагниты применяются в беспружинных тормозах с высокой степенью надежности торможения,но для механизмов с небольшим числом включений в час.

Длинноходовые электромагниты переменного тока имеют прямоходовую конструкцию с Ш-образным шлихтованным магнитопроводом на котором расположены три катушки, включенные в "звезду" или "треугольником".

Электромагниты этого типа выпускаются серии КМТ четырех типов размеров на напряжение 220380В и 500В.

2.3.7.Расчет резисторов пускового реостата и выбор ящиков сопро¬тивлений.

Величины сопротивления, введенных в цепь ротора двигателя в оп¬ределенном масштабе могут быть получены из пусковой диаграм¬мы(рис.22)

Принято:Ip = 51(А)

Iпер = 54(А)

Iп = 102(А)

Из диаграммы истекает:двигатель имеет 3 степени разгона.

Активное сопротивление фазы ротора:

rp = Uн.р.*S/(?3*Iр.н.) = 172*0,065/(?3*51) = 0,127 ( Ом )

где: Uн.р. = 172 (В), Iр.н. = 51 (А); S = no-n/no = 0,065

Маштаб сопротивлений: m = rp/аб = 0,127/7 = 0,018 (Ом/мм)

Сопротивления ступеней;

R1 = m*де = 0,018*46 = 0,828 (Ом)

R2 = m*д2 = 0,018*25 = 0,45 (Ом)

R3 = m*2в = 0,018*14 = 0,252 (Ом)

Rневыкл = m*вб = 0,018*8 = 0,144 (Ом)

Наимено-

вание

ступени Обозн-

ачение Расчетное

сопротив-

ление

( Ом ) Технические данные Кол-во

сопрот-

ивлений Факти-

ческое

сопро-

тивле-

ние

( Ом )

сопроти-

вление

эл-та

( Ом ) Длитель-

ный доп-

устимый

ток (А)

1 R1 0,828 0,4 64 2 0,8

2 R2 0,45 0,156 82 3 0,468

3 R3 0,252 0,079 114 3 0,237

не выключ Rневыкл 0,144 0,089 114 2 0,158

Схема соединения резисторов для одной фазы ротора двигателя на ( рисунке 13 )

Пускорегулировачные резисторы серии НФ представляют собой ящики открытого исполнения. В этих элементах применяются сопротивления на фехралевой ленте, намотанной на ребро. Внешние зажимы ящиков сопро¬тивления не маркированы. Расположение ящиков должно исключать воз¬можность случайного прикосновения к ним и обеспечить защиту от ат¬мосферных осадков.

3. ОПИСАНИЕ СУЩЕСТВУЮЩИХ СХЕМ УПРАВЛЕНИЯ

Привод двустворчатых ворот. Наибольшее распространение на шлюзах нашей страны получили плоские, двустворчатые ворота. Основное тех¬нологическое требование здесь сводится к правильному и безударному створению полотнищ. Для привода двустворчатых ворот на правом и ле¬вом устоях камеры устанавливают по механизму, приводимому во враще¬ние сворим электродвигателем.

Привод с асинхронными двигателями без регулирования скорости движения. В нем могут быть использованы асинхронные двигатели ка с фазным, так и с короткозамкнутым ротором. Структурная схема такого привода дана на (рисунке 23), а. Система отличается простотой и вы¬сокой надежностью. Однако она обладает таким серьезным недостатком, как тяжелое протекание переходных процессов и невозможность управ¬ления частотой вращения двигателей при створении ворот и входе их полотнищ в ниши.

Привод с асинхронными фазными двигателями с регулированием ско¬рости движения изменением сопротивления цепи ротора.Этот широко применяемый на шлюзах приводах двустворчатых ворот отличается от предыдущего возможностью регулирования частоты вращения двигателей при маневрировании воротами и управлением в процессе разгона при пуске двигателей в ход. Структурная схема системы привода показана на (рисунке 23).

Такая система,используется в большинстве случаев в сочетании с кривошипно-шатунным механизмом, имеет очень тяжелую динамику при пуске из промежуточных положений, необходимость которого нередко возникает,например, из-за недостаточной согласованности скоростей движения створок ворот, различия продолжительности разгона двигате¬лей при реостатном пуске и т. п. В случае применения других типов тяговых органов ( например, тросовых ) положение усугубляется еще тем, что в конце операций получаются недопустимо большие скорости движения створок и для исключения ударов возникает потребность в искусственном снижении частоты вращения двигателей.

Электропривод с тормозными генераторами. Привод двустворчатых ворот, рассмотренный выше, в операции закрытия работает на смягчен¬ных характеристиках и в результате колебаний скорости движения не обеспечивает правильного створения ворот при различных изменениях нагрузки на левую и правую створки от ветра и волн. Кроме того, из-за сравнительно высокой скорости движения створок в конце опера¬ции закрытия при наложении тормозов раньше времени в воротах оста¬ется большая щель, а при наложении с опозданием получается удар створок.

Устранение отмеченных недостатков возможно при работе привода в течении большей части операции на жестких механических характерис¬тиках, обеспечивающих сохранение скорости движении створок при ко¬лебаниях нагрузки, и со значительным уменьшении скорости движения в конце операции перед наложением тормозов. Такие характеристики мож¬но получить в системе с тормозным генераторами, включаемыми в конце операции для получении малой скорости движения . Тормозной генера¬тор может быть отдельной электрической машиной постоянного или пе¬ременного тока, навешанной на вал приводного

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 13 14 



Copyright © 2005—2007 «Mark5»