Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Схемотехника /

Шпоры

←предыдущая  следующая→
1 2 3 



Скачать реферат


1.Датчики. Классификация. Основные виды датчиков. Область применения.

Большинство причин характеризующие технологические процессы имеют не электрический характер (температура, давление, влажность, скорость), поэтому в автоматических системах применяют разнообразные преобразования не электрической величины в электрическую – датчики.

Основным параметром датчика является – динамическая чувствительностьв: к=∆у/х∆ (∆у - изменение выходной величины, х∆ - изменение входной величины).

Дополнительные требования к датчикам:

1. точность преобразования

2. быстродействия

В настоящее время находят применение большое количество датчиков которые классифицируются:

- по входной величине: механические, термические, гидравлические, пневматические, оптические, акустические, радиоволновые.

- по принципу действия: параметрические, генераторные. Параметрические датчики преобразуют входную величину в параметры электрической цепи: R,C, L. Генераторные датчики преобразуют энергию входной величины в электрическую энергию.

5.Устройства отображения информации. Основные параметры. Активные и пассивные индикаторы.

Автоматические системы обрабатывают электрический сигнал, человек воспринимает выходную информацию в виде визуальных и звуковых сигналов. Звуковая форма в основном применяется в системах радиосвязи и радиовещании, в качестве преобразований служат микрофоны и громкоговорители. Задача звукового отображения информации в автоматических системах управления сложна. По коду цифрового сигнала (набор цифр или букв) необходимо создать образ звукового сигнала. Эти задачи выполняются устройствами синтетической речи при помощи специальных ЭВМ. Применение их ограничено из – за плохой разборчивости. В автоматических системах 90% информации отображается в визуальном виде. Средство визуального отображения информации делится на регистрационные и наглядные. К регистрационным средствам относится: самописцы, печатные устройства, фотографические и т. д. Все они относятся к механическим средствам. К наглядным средствам относятся индикаторные устройства и дисплеи. Индикаторные устройства реализуются на основе электросветовых индикаторов и электронно – лучевых трубок. Буквенно – цифровые и графические дисплеи реализуются на основе электронно – лучевых трубок и индикаторных матриц. Основные параметры устройств визуального отображения информации: 1.разрешающая способность (характеризует минимальные размеры различаемых деталей изображения, выражается в числе различных линий на один см высоты или ширины, измерение этого параметра производиться по специальным таблицам) 2.сила света излучения единичной площадью поверхности 3.контрастность – это сравнительная яркость изображения и фона 4.цвет (используется трехкомпонентная теория цвета). В цветных дисплеях цвет применяется в качестве кода для представления информации. 5.мелькания (частота изменения яркости изображения, вызванных процессов поэлементного высвечивания. Мелькания не наблюдаются если частота регенерации изображения 50Гц. Индикаторы делятся на: активные (излучающие свет: лампы накаливания, газоразрядные приборы, полупроводниковые приборы), пассивные (работающие на отображение света внешних источников: шкалы измеряемых приборов, цифровые индикаторы).

8. Электронной – лучевые трубки. Принцип действия. Область применения.

Различают однолучевые и многолучевые, монохромные и цветные.

ЭЛТ с электростатическим управлением:

1.катод формирует электронный пучек 2.управляющий электрод, определяет интенсивность электронного пучка 3.ускоряющие и фокусирующие электроды, формируют узкий остро направленный электронный луч 4.откланение пластины, горизонтальные и вертикальные, определяют пространственное положение луча.

Электронно лучевая трубка с магнитным управлением. В этих трубках фокусировка и отклонение электронного луча осуществляется магнитным полем. 1.катод формирующий электронный пучек 2,3 – электроды осуществляют первичную фокусировку луча. Основное управляющее воздействие на луч оказывает фокусная катушка (М). На электронный пучек действует электромагнитное поле катушки и заставляет совершать вращательное движение вокруг оси трубки. Система с магнитным отклонением позволяет получить более мощный луч, отсюда более яркое свечение экрана и лучшее качество фокусировки. Из – за сложностей систем магнитного отклонения такие устройства применяются в системах радиолокации и навигации. Многолучевые трубки: применяются для отображения нескольких одновременно протекающих процессов. Каждый луч формируется отдельным катодом и управляется независимыми отклоняющимися системами. Цветные электронно лучевые трубки (цвет свечения экрана зависит от минофора). Электроно лучевые трубки применяются: в осциллографах, в телевизионных, буквенно цифровых и логических дисплеях.

4. Полупроводниковые датчики. Принцип действия. Область применения.

Полупроводниковые датчики бывают: без р-n перехода (терморезисторы: применяется для измерения температуры, мощности, температурной компенсации измерительных приборов и схем с транзисторами, фоторезистор: годятся для работы при низкой освещенности), с одним p-n переходом (вентильный фотоэлемент, фотодиод: силовое преобразование лучистой энергии, солнечная батарея: преобразует световую энергию в электрический ток), с двумя p-n переходами (фототранзистор: применяется для дополнительного усиления первичного фототока).

Принцип действия основан на использовании свойств полупроводников.

Фоторезистор - включенный в цепь источника постоянного или переменного напряжения он изменяет величину электрического сопротивления в зависимости от уровня освещенности, также изменяет величину тока в цепи.

Терморезистор – при повышении температуры на каждый градус сопротивление его уменьшается на несколько процентов.

Вентильный фотоэлемент – имеет запорный слой, генерирует ЭДС под действием падающего на него света.

Фотодиод – при его освещенности возрастает проходящий через него ток.

солнечная батарея – применяется в основном для питания космической техники.

Фототранзистор – управление тока эмиттера производиться путем освещения области базы светом, концентрация носителей увеличивается при этом избыточные носители оставаясь базе придают ей заряд, что еще больше увеличивает ток коллектора.

16. АЦП ЦАП. Принципы квантования и кодирования аналоговых сигналов.

В большинстве случаев получаемый от источника информации сигнал представлен в виде непрерывно меняющейся по своему значению величины (U, J), преобразование сигнала из аналоговой формы в цифровую выполняет АЦП и ЦАП. АЦП – это устройство для автоматического преобразования непрерывно меняющейся аналоговой величины в цифровой код. Процесс преобразования включает процедуры квантования и кодирования, при квантовании непрерывная величина преобразования в последовательность ее мгновенных значений. Выделенных по определенному закону. Чаще всего в качестве исходной величины берут ток, или напряжение. При квантовании по времени ток пропускают через контакты периодически включенного реле. В результате образуется последовательность импульсов амплитуда которых соответствует мгновенному значению тока, в момент замыкания реле. При кодировании мгновенные значения замеряются и результаты фиксируются в виде цифрового кода. Процесс квантования и кодирования выполняется с помощью аналоговых и цифровых интегральных схем, микропроцессоров. АЦП широко применяется в измерительных информационных системах в регистрирующих приборах, в установках автоматического управления и т. д. ЦАП – это электронное устройство для автоматического преобразования цифровых кодов в эквивалентной им значение физической величины. Коды обычно представляются в двоичной, в десятичной или другой системах исчисления. Выходные величины представляют собой временные интервалы, угловые перемещения, токи, напряжения и т. д.

Преобразование обычно осуществляется двумя способами: 1.шаговым электродвигателем на который подается последовательность импульсов отображающее преобразованный код 2.электрическим с заряжаемого последовательностью эталонных импульсов число которых соответствует коду. ЦАП входят состав систем автоматического регулирования и управления выполняется в виде интегральных схем.

14. Ждущий мультивибратор. Принцип действия. Область применения.

Для получения прямоугольных импульсов применяют мультивибратор. Он может быть собран не только на дискретных элементах, но и на логическом элементах и на операционном усилителе. Если необходимо получение одиночного импульса применяют ждущий мультивибратор или вибратор. Одно вибратор имеет одно квазиустойчивое состояние и другие состояния в которых он может находиться сколь угодно долго из этого состояния он выводится входным положительным импульсом (запускающий). При включении питания VT2 открывается и выходное напряжение =0. напряжение поступающее по цепи обратной связи, через R2 поддерживает VT1 в запертом состоянии. При этом через резистор Rк1 и отркрытый VT2 происходит зарядка конденсатора, наступившее после этого стационарное состояние сохраняется до тех пор пока на вход не поступит положительный запускающий импульс, при этом VT1 откроется и переходит в режим насыщения. Отрицательное напряжение с коллектора VT1 через конденсатор подается на базу VT2 и запирает транзистор. При этом выходное напряжение =Е. Это напряжение через цепь обратной связи поддерживает VT1 в открытом состоянии даже после окончания входного импульса. Длительность импульса на выходе определена временем перезарядки конденсатора,

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»