Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Теплотехника /

Дипломный проект (Отопительно-производственная котельная ГУП ФАПК Якутия)

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 13 14 



Скачать реферат


протекает нагреваемая среда.

В котельной ГУП ФАПК “Якутия” установлено две пары пароводяных подогревателей ГВС марки ПП-2-17-7-ІІ (с плоским дном), одна пара из них является резервным.

Техническая характеристика подогревателя ПП-2-17-7- ІІ:

1. Площадь поверхности нагрева: 17,2 м3,

2. Диаметр корпуса: 426 мм,

3. Количество трубок: 124 шт.,

4. Длина трубок: 3000 мм,

5. Длина подогревателя: 3575 мм,

6. Давление греющего пара: 0,7 МПа,

7. Число ходов по воде: 2 шт.,

8. Сечение для прохода воды: 0,0096 м2,

9. Гидравлическое сопротивление при расчётном расходе воды 59 т/ч: 0,03 МПа,

10. Масса: 730 кг.

7.4. Водоподготовка.

Вода из городского водопровода содержит растворённые соли и газы. Накипь на стенках котлов образуется в результате выпадения растворённых в воде жёсткости – кальция и магния.

Накипь на стенках котлов понижает коэффициент теплопередачи и, следовательно, ведёт к перерасходу топлива. В топочной части слой накипи может вызвать перегрев стенки и аварию котла. Растворённые в воде газы – кислород и углекислота – вызывают коррозию стенок котла.

В паровой котельной умягчается исходная добавочная вода и деаэрируется вся питательная.

7.4.1. ХВО.

Для умягчения воды применяют метод катионного обмена. Умягчить воду, т.е. снизить её жёсткость, это значит удалить из неё накипеобразователи.

Рекомендуемый метод катионного обмена используют в качестве натрий-катионирования, водородно-натриевого катионирования и аммоний-натриевого катионирования при докотловой обработке воды, когда большинство солей жёсткости переводят в соли с большой степенью растворимости, причём никаких осадков не образуется.

Такие соли даже при большом их количестве в составе котловой воды не будут доходить в растворе до состояния насыщения и, следовательно, выпадать кристаллами накипи на стенки котла.

Таким образом, химическая водоподготовка не избавляет воду от солей, но изменяет их количество и качество, что позволяет при правильно организованном режиме эксплуатации избавиться от накипи.

В данной котельной установке применено двухступенчатая схема Na – катионирования.

Фильтр Na – катионирования выбирается по расходу химически очищенной воды, рассчитанный в тепловой схеме: Gхов= 8,03 т/ч.

Техническая характеристика Na – катионитового фильтра:

1. Марка фильтра: ФИПа І-1,0-0,6-Na,

2. Давление: – рабочие: 0,6 МПа,

– пробное гидравлическое: 0,9 МПа,

3. Вместимость корпуса: 2,27 м3,

4. Производительность: 20 м3/ч,

5. Фильтрующая загрузка: – высота: 2 м,

– объём: 1,6 м3,

6. Масса: – сульфоугля при γ = 0,65 ÷ 0,7 т/м2: 1,04 ÷ 1,12 т,

– катионита КУ-2 при γ = 0,71 т/м2: 1,14т,

7. Внутренний диаметр корпуса: 1000 мм,

8. Высота фильтра: 3685 мм,

9. Толщина стенки: 9 мм,

10. Условный диаметр арматуры:

– для подвода исходной и промывочной воды: 50 мм,

– для отвода обработанной воды: 50 мм,

– для подвода регенерационного раствора: 50 мм,

– для подвода и отвода взрыхляющей воды: 50 мм,

– для отвода регенерационного раствора, отмывочной воды и первого фильтрата: 50 мм,

– для гидровыгрузки фильтрующего материала: 100 мм,

11. Масса конструкции фильтра: 1,09 т.

Описание работы Na – катионитовой установки.

По теории электролитической диссоциации молекулы некоторых веществ, находящихся в водном растворе, распадаются на положительно и отрицательно заряженные ионы – катионы и анионы.

При Na – катионировании, растворённые в воде соли кальция (Ca) и магния (Mg) при фильтрации через катионитовый материал (NaR) обменивают катионы Ca2+ и Mg2+ на катионы Na+. В итоге получаются только натриевые соли – которые обладают большой степенью растворимости.

Изменение солевого состава воды происходит по следующим формулам:

2NaR + Ca(HCO3)2 = CaR2 + 2NaHCO3

2NaR + Mg(HCO3)2 = MgR2 + 2NaHCO3

2NaR + CaSO4= CaR2 + Na2SO4

2NaR + MgSO4= MgR2 + Na2SO4

2NaR + CaCl2= CaR2 + 2NaCl

2NaR + MgCl2= MgR2 + 2NaCl

R – условно показана сложная формула катионитового материала

В дальнейшем в воде происходит разложение бикарбонатов натрия:

2NaHCO3 = Na2CO3 + СО2

Na2CO3 + Н2О = 2NaОН + СО2

Катионитовым материалом, заполняющий фильтр, является сульфоугль. Его получают после обработки бурого или каменного угля дымящейся серной кислоты.

Характеристика сульфоугля.

Диаметр зерна: 0,3 ÷ 1,2 мм,

Насыпная масса в воздушно- сухом виде: 0,55 т/м3,

Ёмкость поглощения: 300 мг-экв/л,

Верхний предел температурной стойкости: 70 оС,

Годовой износ: 10 ÷ 15 %

Ёмкость катионитового материала есть предел его обменной способности, после чего израсходованные катионы необходимо восстанавливать регенерацией.

Регенерация катионитового материала производится 6 ÷ 8 % раствором поваренной соли, пропускаемым через него, в результате регенерации действие сульфоугля восстанавливается. Реакции идут по уравнениям:

CaR2 + 2NaCl = 2NaR + CaCl2

MgR2 + 2NaCl = 2NaR + MgCl2

Концентрированные растворы хлоридов кальция и магния, а также избыток соленого раствора выбрасываются в дренаж. Характерной особенностью Na – катионирования является отсутствие солей выпадающих в осадок. Поэтому не смотря на то что жесткость второй ступени доводят до 0,02 мг-экв/кг, щёлочность умягчённой воды остаётся равной карбонатной жёсткости исходной воды.

Сухой остаток при Na – катионировании можно считать постоянным.

Получающийся при разложении NaHCO3 едкий натрий (NaОН) даёт вспенивание воды и может вызвать коррозию металла котла, а углекислота, остающаяся в конденсате, – коррозию конденсатопроводов. Но так как относительная щёлочность получается меньше 20 %, то она не нуждается в нейтрализации.

Двухступенчатая схема Na – катионирования.

В фильтр 1 загружен катионитовый материал – сульфоугль.

Подлежащая обработке вода подаётся по трубопроводу 2 на фильтр первой ступени и проходит сверху вниз через слой сульфоугля. После прохождения исходной воды через фильтр первой ступени, вода с жёсткостью 0,5 мг-экв/кг поступает на фильтр второй ступени.

Умягчённая вода (до 0,02 мг-экв/кг) отводится в термический деаэратор по трубе 5.

На время регенерации катионитовые фильтры поочерёдно выключают из работы. Регенерационный раствор поваренной соли подаётся из бака раствора соли по трубе 3 и сбрасывается в дренаж 4. Скорость пропускания регенерационного раствора 3 ÷ 5 м/ч.

Процесс регенерации включает в себя следующие операции:

1. Взрыхление катионита исходной водой происходит снизу вверх.

2. Регенерация катионита происходит сверху вниз.

3. Отмывка катионита исходной водой от продуктов регенерации.

Отмывка Na – катионитового фильтра заканчивается при снижении жёсткости: после Ι ступени до 0,5 мг-экв/кг; после ΙΙ ступени до 0,02 мг-экв/кг.

После отмывки фильтр готов к работе в режиме умягчения. При роботе в режиме умягчения необходимо следить за: перепадом давления создаваемого фильтром; качеством умягчённой воды; следить за отсутствием катионита в умягчённой воде.

7.4.2. Деаэратор.

Деаэратор атмосферного типа выбирают по расходу химически очищенной воды, к этому расходу следует прибавить расход конденсата от пароводяных водоподогревателей, т.к. его направляют в верхнюю часть деаэрационной колонки: Gхим = 8,03 + 10,01 + 1 = 19,04 т/ч;

В котельной установлен атмосферный деаэратор марки ДА-25 с барботажным устройством, которое установлено в баке-аккумуляторе деаэратора.

Техническая характеристика деаэратора ДА-5:

1. Номинальная производительность: 25 т/ч;

2. Рабочие давление: 0,12 МПа;

3. Температура деаэрированной воды: 104 оС;

4. Средняя температура подогрева воды в деаэраторе: 10 ÷ 40 оС;

5. Размеры колонки: – диаметр и толщина стенки корпуса: 530х6 мм;

– высота: 2195 мм;

6. Масса: 280 кг;

7. Пробное гидравлическое давление: 0,3 МПа.

Описание работы деаэратора.

Деаэрацией называется освобождение питательной от растворённого в ней воздуха в состав которого входит кислород (О2) и двуокись углерода (СО2). Будучи растворенными, в воде эти газы вызывают коррозию питательных трубопроводов и поверхности нагрева котла, вследствие чего оборудование выходит из строя.

Термический деаэратор служит для удаления из питательной воды растворённых в ней кислорода и двуокиси углерода путём нагрева воды до температуры кипения. При температуре кипения воды растворённые в ней газы полностью теряют способность растворяться. Деаэратор состоит из бака-аккумулятора и деаэрированной колонки, внутри которой расположен ряд распределительных тарелок. Внутри бака-аккумулятора расположено барботажное устройство – оно служит для дополнительного удаления растворённых газов путём частичного перегрева питательной воды. За счёт барботажного устройства качество деаэрации

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 13 14 



Copyright © 2005—2007 «Mark5»