Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Цифровые устройства /

Логические элементы и их электронные аналоги

←предыдущая следующая→
1 2 3 



Скачать реферат


Рис.5. Логический элемент И на биполярных транзисторах (а), диаграммы напряжений на его входах А, В я выходе Q (б); элемент И, выполненный на многоэмиттерном (б) и МОП-транзисторах (а)

Логический элемент ИЛИ.

Логическое утверждение «Если А или В истинно, тогда Q истинно» записывается так А+В=Q, где знак «+» есть символ, обозначающий операцию ИЛИ. Соответствующая этому определению Функциональная табл. 2. показывает, что выход получается при наличии любого входного сигнала. Принципиальная схема двухвходового логического элемента ИЛИ в ТТЛ-исполнении приведена на рис. 6, а. В соответствии с правилами логического сложения, если на входах А и В действуют сигналы логических 0, переходы база - эмиттер транзисторов VT1 и VT4 открыты и через них протекает ток. При этом, очевидно, через переходы база - кол¬лектор в транзисторах VT1 и VT4 ток не протекает, вследствие чего закрыты транзисторы VT2 и VT3 и на их общем сопротивле¬нии в цепи эмиттеров R2 нет падения напряжения, т.е. выходной сигнал Q соответствует логическому 0. Если на одном из входов А или В действует сигнал положительной полярности, соответ¬ствующий логической 1, то происходят запирание перехода база — эмиттер транзистора VT1 (или VT4) и отпирание перехода база — коллектор. Это приводит к отпиранию транзистора VT2 (или VT3 и появлению на резисторе R2 - на выходе Q — почти полного напряжения источника питания (за вычетом падения напряжения в несколько десятых долей вольта на полностью открытом тран¬зисторе VT2 или VT3. При подаче сигнала 1 на оба входа А и В открываются и оба выходных транзистора VT2 и VT3, что приво¬дит к некоторому увеличению напряжения на выходе Q. Таким образом, рассмотренная электронная схема выполняет логиче¬ское сложение ИЛИ.

Рис. 6. Логический элемент ИЛИ, выполненный на биполярных (а) и И МОП-транзисторах (б)

Логический элемент ИЛИ на МОП-транзисторах может быть выполнен по схеме, приведенной на рис. 6, б. В этой схеме тран¬зисторы VT1 и VT2 включаются при подаче на их затворы поло¬жительного напряжения логической 1 и выключаются, если дей¬ствует напряжение логического 0. Транзистор VT3 используется вместо резистора и постоянно открыт, что приводит к потребле¬нию энергии питания, в то время когда открыты транзисторы VT1 и VT2.

Логический элемент НЕ.

Это операция применяется в случаях, когда требуется иметь противоположные значения переменной. Противоположное значение переменной называется дополнением этой переменной Символически для НЕ оно обозначается чертой над соответствующей переменной величиной: А=Q.

В простейшем случае элемент НЕ инвертор - может быть выпол¬нен на биполярном (или поле¬вом) транзисторе с общим эмиттером (рис. 7, а). Когда на входе А действует сигнал 0, транзистор VT тока" не проводит и напряже¬ние на выходе Q максимально, практически равно напряжению источника питания и соответствует сигналу 1. Если на входе действует положительное напряжение, соответствующее сигналу 1, транзистор VT (n - p - n-типа) отпирается, переходит в режим насыщения и напряжение на выходе Q снижается до уровня 0,1—0,3 В, соответствующее сигналу 0. Таким образом, схема инвертирует входной сигнал. У рассмотренной схемы НЕ много недостатков: малы быстродействие и нагрузочная способность и весьма низка помехоустойчивость. Поэтому на практике исполь¬зуют более сложные схемы. В частности, на рис. 7, б приведена схема инвертора семейства ТТЛ на основе многоэмиттерного транзистора VT1. При напряжении логического 0 на входе А создаются условия для проте¬кания тока в транзисторе VT1 только в цепи перехода эмит¬тер-база (на рис. 7, б ука¬заны два параллельно соеди¬ненных эмиттера, работаю¬щих как один), а переход коллектор-база закрыт, вслед¬ствие чего нет тока в цепи ба¬зы транзистора VT2 и он за¬перт. При этом на его кол¬лекторе имеется напряжение, близкое к напряжению ис¬точника питания. Это напря¬жение действует на базу тран¬зистора VT3, что приводит к его полному отпиранию. В то же время транзистор VT4 заперт, поскольку на его базу не подается никакого напряжения, так как транзистор VT2 закрыт, ток через него не проходит и на рези¬сторе R2 нет напряжения (которое могло бы открыть транзи¬стор VT4). Таким образом, поскольку транзистор VT3 открыт, а VT4 закрыт, на выходе Q действует положительное напряжение, близкое к напряжению источника питания, что соответствует логической 1. Если на вход А подается напряжение логической 1, то переход эмиттер - база транзистора VT1 запирается, но создаются условия для протекания тока через его переход коллек¬тор - база и тем самым для протекания тока через базу транзи¬стора VT2, что приводит к его отпиранию и переходу в режим насыщения. При этом транзистор VT3 запирается (так как на коллекторе VT2 действует слишком низкое напряжение), а тран¬зистор VT4 отпирается, так как на его базу подается с рези¬стора R2 напряжение в положительной полярности. Таким обра¬зом, через малое сопротивление открытого транзистора VT4 выход соединяется с общей шиной «землей» и напряжение на нем оказывается почти нулевым и схема работает как инвертор. Диод VD, включенный на вход А, защищает схему от перегрузки по входу.

Существенно повысить быстродействие инвертора и снизить расход энергии питания позволяет применение диодов Шоттки, включаемых параллельно переходу коллектор - база биполяр¬ного транзистора (рис. 7, в). Такое соединение называется тран¬зистором Шоттки и обозначается в электронных схемах, как пока¬зано на рис. 7, в. Среднее время задержки сигналов в логических элементах ТТЛШ порядка 1,5 нс при средней потребляемой мощ¬ности около 20 мВт на один логический элемент.

Применение МОП-транзисторов позволяет почти в 10 раз увеличить число активных элементов на кристалле интегральной микросхемы и более чем в 103 раз уменьшить потребление энергии питания по сравнению с биполярными транзисторами. Однако почти в 10—20 раз уменьшается быстродействие (в первую оче¬редь, из-за больших емкостей на входе и выходе транзисторов и очень высоких входных сопротивлений).

Инвертор на МОП-транзисторах с n-каналами может быть выполнен по схеме, приведенной на рис. 8, а. Транзистор VT1, на затвор которого подается напряжение в отпирающей поляр¬ности, выполняет роль резистора (сопротивление которого может быть сделано любым - в пределах от сотен омов до сотен кило-омов - в зависимости от технологии изготовления и напряжения на затворе). Если на входе А действует сигнал 0, то транзистор VT2 закрыт и напряжение на выходе Q практически равно напря¬жению источника питания, т. е. соответствует напряжению логи¬ческой 1. Когда на вход А действует положительное напряжение, соответствующее напряжению логической 1, то транзистор VT2 открывается (его сопротивление при этом составляет всего 300 - 500 Ом) и напряжение на выходе Q становится весьма малым (де¬сятые доли-единицы вольт), что соответствует логическому 0. Существенное повышение быстродействия (и снижение потребле¬ния энергии питания) достигается при использовании комплиментарной пары КМОП-транзисторов.

Схема КМОП-инвертора приведена на рис. 8, б. Если на входе А схемы действует напряжение логического нуля, то тран¬зистор VT1, имеющий р-канал, полностью открыт, поскольку его затвор при этом соединен с общим проводом и поэтому на него подается напряжение в отпирающей полярности относительно истока, соединенного с плюсом источника питания. Транзи¬стор VT2 имеющий n-канал, заперт, вследствие чего напряжение на выходе Q максимально и соответствует напряжению логиче¬ской 1. Когда на вход А подается положительное напряжение логической 1, то транзистор VT1 запирается, а транзистор VT2 полностью отпирается, вследствие чего напряжение на входе Q становится нулевым. Быстродействие этой схемы по сравнению с предыдущей существенно увеличивается благодаря тому, что заряд-перезаряд паразитных емкостей происходит через весьма малые сопротивления полностью открытых транзисторов VT1 и VT2. Потребление энергии питания снижается до уровня деся¬тых долей микроватта на один элемент потому, что схема потреб¬ляет ток, в сущности, только во время переключения, когда один транзистор открывается, другой закрывается. В остальное вре¬мя — при 0 или 1 — всегда один из транзисторов закрыт и ток от источника питания не потребляется.

Рис. 7. Логический элемент НЕ, выполненный на обычном биполярном транзисторе (а); многоэмиттерном транзисторе с дополнительным усилителем (б); Транзистор Шоттки и его условное графическое изображе¬ние в электронных схемах (в).

Рис. 8. Логический элемент НЕ, выпол¬ненный на МОП-транзисторах с n-каналом (а), комплиментарной паре МОП-транзисторов с n- и р-каналами (б).

Логический элемент И – НЕ.

Более универсален элемент И-НЕ, позволяющий одновременно с операцией логического умножения выполнить и отрицание, тем более что в большинстве случаев это не усложняет схемы. Например, на рис. 9, а приведен МОП-вариант схемы логиче¬ского элемента И-НЕ. Транзистор VT1 используется вместо сопро¬тивления нагрузки и постоянно открыт, ибо на его затвор подается напряжение в отпирающей полярности. Если на затворы транзи¬сторов VT2 и VT3 поданы напряжения логического 0, то они за¬перты, тока не проводят и на выходе Q действует почти полное напряжение питания, т. е. напряжение логической 1. Если по¬дается напряжение логической 1 только на один из входов А или В, то состояние схемы не изменяется и напряжение на выходе остается неизменным. Однако, если на оба входа действуют на¬пряжения логических

←предыдущая следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»