Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Экономико-математическое моделирование /

Изучение состава кадров

←предыдущая следующая→
1 2 3 4 



Скачать реферат


660 830 1170 1340 1515

Группы по х Группы по у

До 745 745-915 1085-1255 1255-1425 Свыше 1425 fx yj

До 5 лет 7 4 11 722

5-8 лет 3 2 2 1 8 915

8-11 лет 3 1 4 915

11-14 2 1 3 1000

14-17 2 2 1515

Свыше17 лет 2 2 1515

fy 10 11 3 2 4 30

Примечание: В таблице используются следующие обозначения:

yj – среднее значение результативного признака для j-той группы значений факторного признака;

fx – частота повторения данного варианта значения факторного признака во всей совокупности;

fy – частота повторения результативного признака во всей совокупности.

Данная корреляционная таблица уже при общем знакомстве даёт возможность выдвинуть предположение о наличии или отсутствии связи, а также выяснить её направление, Если частоты расположены по диагонали из верхнего левого угла в правый нижний, то связь между признаками прямая. Если же частоты расположены по диагонали справа налево, - то связь обратная. В данном случае можно предположить наличие прямой связи.

Корреляционная зависимость чётко обнаруживается только при рассмотрении средних значений результативного признака, соответствующих определённым значениям факторного признака, т.к. при достаточно большом числе наблюдений в каждой группе влияние прочих случайных факторов будет взаимопогашаться, и чётче выступит зависимость результирующего признака от фактора, положенного в основу группировки.

Для предварительного выявления наличия связи и раскрытия её характера, применяют графический метод. Используя данные об индивидуальных значениях признака-фактора и соответствующих ему значениях результативного признака, строится в прямоугольных координатах точечный график, который называют «полем корреляции». Для данного примера поле корреляции имеет следующий вид ( см. рис. 2.1).

Рис.2.1.

Точки корреляционного поля не лежат на одной линии, они вытянуты определённой полосой слева на право. Нанеся средние значения факторного и результирующего признаков на график и соединяя последовательно отрезками прямых соответствующие им точки, получают эмпирическую линию связи.

Если эмпирическая линия связи по своему виду приближается к прямой линии, то это свидетельствует о наличии прямолинейной корреляционной связи между признаками. Если же имеется тенденция неравномерного изменения значений результирующего признака, и эмпирическая линия связи будет приближаться к какой-либо кривой, то это может быть связано с наличием криволинейной корреляционной связи.

2.3. Множественная корреляция

Проведенный выше анализ статистических совокупностей позволяет изучить взаимосвязь только двух переменных.

На практике же часто приходится исследовать зависимость результирующего признака от нескольких факторных признаков. В этом случае статистическая модель может быть представлена уравнением регрессии с несколькими переменными. Такая регрессия называется множественной (множественная корреляция).

Например, линейная регрессия с m независимыми переменными имеет вид:

yi = a0x0 + a1x1 + a2x2 + … + amxm, (2.1)

где а0, а1, а2, …, аm – параметры уравнения регрессии,

m – число независимых переменных,

х0, х1, х2, …, хm – значения факторного признака,

yi – значение результирующего признака.

При оценке параметров этого уравнения в каждом i-том наблюдении фиксируют значения результирующего признака у и факторных признаков хi0…хim.

Оценки параметров уравнения регрессии находятся с помощью метода наименьших квадратов, который в случае множественной регрессии удобнее представить в матричной форме.

Применяются следующие обозначения:

а = (аj), j = 0,1,…,m – вектор оценок параметров, m – число неизвестных параметров;

у = (уi), i = 1,2,…,n – вектор значений зависимой переменной, n – число наблюдений;

х = (хij) – матрица значений независимых переменных размерностью n(m+1);

е = (ei) – вектор ошибок в уравнении с оцененными параметрами.

Уравнение регрессии с оцененными параметрами имеет вид:

у = Ха, (2.2)

Линейная модель (2.1) в векторном виде имеет вид:

у = Ха + е. (2.3)

Сумма квадратов отклонений равна:

Q = еi2 = eTe = (y-Xa)T(y-Xa) = yTy – aTXTy – yTXa + aTXTXa =

= yTy – 2aTXTy + aTXTXa, (2.4)

где Т – знак операции транспонирования, т.е. строки исходной матрицы в транспонированной занимают положение столбцов.

Дифференцированием Q по а получается

= -2ХТу + 2(ХТХ)а (2.5)

Приравниванием производной к нулю получается выражение для определения вектора оценки а:

ХТу = ХТХа,

а = (ХТХ)-1(ХТу). (2.6)

Оценку а, определенную изложенным способом, называют оценкой метода наименьших квадратов. Применительно к уравнению регрессии (2.1) матрицы коэффициентов имеют вид:

I x11 x12 … x1m

I x21 x22 … x2m

X = … … … … … ,

… … … … …

I xn1 xn2 … xnm

и, следовательно,

n xi1 … xim

хi1 xi12 … xi1xim

XTX= … … … … ,

… … … …

хim xi1xim … xim2

уi

yixi1

ХТу= : .

:

yixim

Суммирование производится по числу наблюдений n.

2.4. Применение множественной корреляции к изучению состава кадров на промышленном предприятии

Рассматривается пример:

Переменная у (заработная плата) зависит от разряда х1 и степени выплачивания норм х2 . Принимая линейную модель множественной регрессии в виде

y=a0+a1x1=a2x2

определить оценки а0, а1, а2 параметров по методу наименьших квадратов.

Исходные данные по 30 рабочим приведены в табл. 2.3.

Таблица 2.3.

Сведения о заработной плате, стажу и степени выполнения норм по 30 рабочим на промышленном предприятии

i y, зар.плата x1, разряд x2, степень вып. норм

1 2 3 4

1 1100,1 5 117,4

2 1121,3 5 118,3

3 700,5 3 102,4

4 801,5 5 113,7

5 714,5 4 101,5

6 1500,5 7 127,5

7 1100,9 6 118,4

8 575,8 4 97,4

9 1598,5 7 134,5

10 704,5 4 98,5

11 714,5 4 101,5

12 763,1 4 109,4

13 670,4 2 121,3

14 764,3 4 117,4

15 1307,4 7 129,7

16 800,4 5 118,6

Продолжение табл.2.3.

1 2 3 4

17 619,7 4 103,3

18 1607,4 7 136,7

19 614,1 6 114,9

20 691,8 4 100,3

21 576,4 3 100,9

22 900,7 5 99,6

23 587,3 6 105,4

24 814,4 6 103.7

25 767,5 5 111,1

26 1409.5 7 127,3

27 1499,7 7 129,9

28 904,4 6 117,7

29 871,3 5 105,4

30 860,5 5 103,2

Итого 152 3386,9

Оценки а0, а1, а2 следует рассчитать по методу наименьших квадратов.

1 5 117,4 1100,1 1 … 1

X = : : : , Y = : , XT = 5 … 5

1 5 103,2 860,5 117,4 … 103,2

30 152 3386,9 27662,9

XTX = 152 824 17466 , XTy = 150068,4 ,

3386,9 17466 38632,4 3215384

0,004570565 -0,000891327 2,27457Е-06

(XTX)-1 = -0,000891327 0,000172501 1,53416Е-07 .

2,27457Е-06 1,53416Е-07 –3,37237Е-07

Вектор оценок параметров уравнения линейной регрессии равен (см.формулу 2.6.) :

-0,01133

а = 42,08981 .

7,313614

Уравнение линейной регрессии с данными оценками параметров имеет следующий вид:

у = -0,01133 + 42,08981*х1 + 7,313614*х2.

Далее следует проводить анализ коэффициентов регрессии.

2.5.Анализ коэффициентов регрессии

В общем случае, чтобы сделать коэффициенты регрессии сопоставимыми, применяют нормированные коэффициенты регрессии.

Коэффициент показывает величину изменения результативного

←предыдущая следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»