Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Медицина /

Генетика человека

←предыдущая  следующая→
1 2 3 



Скачать реферат


Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысяче¬летий человек пользовался генетическими методами для улучшения домашних животных и возделывае¬мых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разно¬образным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из при¬родных популяций и скрещивая их между со¬бой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Однако лишь в начале XXв. ученые стали осозна¬вать в полной мере важность законов наследствен¬ности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные призна¬ки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе «задатки» того огромного мно¬жества признаков, из которых слагается каждый отдельный организм.

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866г. опубликовал статью, заложившую основы совре¬менной генетики. Мендель показал, что наследст¬венные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособлен¬ных) единиц. Эти единицы, представленные у особей парами, остаются дискретными и передаются по¬следующим поколениям в мужских и женских га¬метах, каждая из которых содержит по одной едини¬це из каждой пары. В 1909г. датский ботаник Иогансен назвал эти единицы гедам, а в 1912г. американский генетик Морган показал, что они находятся в хромосомах. С тех пор генетика достиг¬ла больших успехов в объяснении природы наслед¬ственности и на уровне организма, и на уровне гена.

1. Природа генов

Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

а) ген как единица рекомбинации.

На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

б) ген как единица мутирования.

В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

в) ген как единица функции.

Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

2. Хромосомная теория наследственности

К концу XIXв. в результате повышения оптических качеств микроскопов и совершенствования цитологических методов возможно стало наблюдать поведение хромосом в гаметах и зиготах. Еще в 1875г. Гертвиг обратил внимание на то, что при оплодотворении яиц морского ежа происходит слияние (двух ядер - ядра спермия и ядра яйцеклетки. В 1902г. Бовери продемонстрировал важную роль ядра в (регуляции развития признаков организма, а в 1882г. Флемминг описал поведение хромосом во время митоза.

В 1900г. законы Менделя были вторично открыты и должным образом оценены почти одновременно и независимо друг от друга тремя учеными - де Фризом, Корренсом и Чермаком. Корренс сфор¬мулировал выводы Менделя в привычной нам фор¬ме двух законов и ввел термин «фактор», тогда как Мендель для описания единицы наследственности пользовался словом «элемент». Позднее американец Уильям Сэттон заметил удивительное сходство между поведением хромосом во время образования гамет и оплодотворения и передачей менделевских наследственных факторов.

На основании изложенных выше данных Сэттон и Бовери высказали мнение, что хромосомы являются носителями менделевских факторов, и сформулиро¬вали так называемую хромосомную теорию наследственности. Согласно этой теории, каждая пара фак¬торов локализована в паре гомологичных хромо¬сом, причем каждая хромосома несет по одному фактору. Поскольку число признаков у любого ор¬ганизма во много раз больше числа его хромосом, видимых в микроскоп, каждая хромосома должна содержать множество факторов.

В 1909г. Иогансен заменил термин фактор, озна¬чавший основную единицу наследственности, тер¬мином ген. Альтернативные формы гена, опреде¬ляющие его проявление в фенотипе, назвали аллелями. Аллели - это конкретные формы, которыми мо¬жет быть представлен ген, и они занимают одно и то же место - локус - в гомологичных хромосомах.

3. Сцепление

Все ситуации и примеры, обсуждавшиеся до сих пор, относились к наследованию генов, находящихся в разных хромосомах. Как выяснили цитологи, у человека все соматические клетки содер¬жат по 46 хромосом. Поскольку человек обладает тысячами различных признаков - таких, например, как группа крови, цвет глаз, способность секретировать инсулин, - в каждой хромосоме должно на¬ходиться большое число генов.

Гены, лежащие в одной и той же хромосоме, называют сцепленными. Все гены какой-либо одной хромосомы образуют группу сцепления; они обычно попадают в одну гамету и наследуются вместе. Таким образом, гены, принадлежащие к одной груп¬пе сцепления, обычно не подчиняются менделевскому принципу независимого распределения. Поэтому при дигибридном скрещивании они не дают ожидае¬мого отношения 9:3:3:1. В таких случаях получаются самые разнообразные соотношения. У дрозофилы гены, контролирующие окраску тела и длину крыла, представлены следующими парами аллелей (назо¬вем соответствующие признаки): серое тело - чер¬ное тело, длинные крылья - зачаточные (короткие) крылья. Серое тело и длинные крылья доминируют. Ожидаемое отношение фенотипов в F2 от скрещива¬ния между гомозиготой с серым телом и длинными крыльями и гомозиготой с черным телом и зачаточными крыльями должно составить 9: 3: 3: 1. Это указывало бы на обычное менделевское наследова¬ние при дигибридном скрещивании, обусловленное случайным распределением генов, находящихся в разных, негомологичных хромосомах. Однако вмес¬то этого в F2 были получены в основном роди¬тельские фенотипы в отношении примерно 3: 1. Это можно объяснить, предположив, что гены окраски тела и длины крыла локализованы в одной и той же хромосоме, т.е. сцеплены.

Практически, однако, соотношение 3:1 никогда не наблюдается, а возникают все четыре фенотипа. Это объясняется тем, что колкое сцепление встреча¬ется редко. В большинстве экспериментов по скрещи¬ванию при наличии сцепления помимо мух с ро¬дительскими фенотипами обнаруживаются особи с новыми сочетаниями признаков. Эти новые феноти¬пы называют рекомбинантными. Все это позволяет дать следующее определение сцепления: два или более генов называют сцепленными, если потомки с новыми генными комбинациями (рекомбинанты) встречаются реже, чем родительские фенотипы.

4. Группы сцепления и хромосомы

Генетические исследования, прово¬дившиеся в начале нашего века, в основном были направлены на выяснение роли генов в передаче признаков. Работы Моргана с плодовой мушкой Drosophila melanogaster показали, что большинство фенотипических признаков объединено у нее в четы¬ре группы сцепления и признаки каждой группы наследуются совместно. Было замечено, что число групп сцепления соответствует числу пар хромосом.

Изучение других организмов привело к сходным результатам. При экспериментальном скрещивании разнообразных организмов обнаружилось, что не¬которые группы сцепления больше других (т.е. в них больше генов). Изучение хромосом этих организмов показало, что они имеют разную длину. Морган доказал наличие четкой связи между этими наблюдениями. Они послужили дополнительными подтверждениями локализации генов в хромосомах.

4.1. Гигантские хромосомы и гены

В 1913г. Стертевант начал свою работу по картиро¬ванию положения генов в хромосомах дрозофилы, во это было за 21 год до того, как появилась возможность связать различимые в хромосомах структуры с генами. В 1934г. было замечено, что в клетках слюнных желез дрозофилы хромосомы при¬мерно в 100 раз крупнее, чем в других соматических клетках. По каким-то причинам эти хромосомы многократно удваиваются, но не отделяются друг от друга, до тех пор пока их не наберется несколько тысяч, лежащих бок о бок. Окрасив хромосомы и изучая их с помощью светового микроскопа, можно увидеть, что они состоят из чередующихся светлых и темных поперечных полос. Для каж¬дой хромосомы характерен свой особый рисунок полос. Первоначально предполагали, что эти полосы представляют собой гены, но оказалось, что дело обстоит не так просто. У дрозофилы можно искусственным путем вызы¬вать различные фенотипические аномалии, которые сопровождаются определенными изменениями в ри¬сунке поперечных

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»