Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Математика /

Асимптота

←предыдущая  следующая→
1 2 



Скачать реферат


МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВА

РЕФЕРАТ

по дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)

Выполнила: студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил: Рошаль А.С.

Москва 2002 год

2

Содержание

Введение 3

2. Нахождение асимптоты 4

2.1 Геометрический смысл асимптоты 5

2.2 Общий метод нахождения асимптоты 6

3. Виды 8

3.1 Горизонтальная асимптота 8

3.2 Вертикальная асимптота 9

3.3 Наклонная асимптота 10

Использованная литература 12

3

Введение

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

4

2. Нахождение асимптоты

Пусть функция f (x) определена для всех x  а (соответственно для всех

x  а). Если существуют такие числа k и l, что f(x)  kx  l = 0 при х    (соответственно при х   ), то прямая

y = kx + l

называется асимптотой графика функции f (x) при x    (соответственно при х   ).

Существование асимптоты графика функции означает, что при х  + 

(или х   ) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.

x  3x  2

Найдём, например, асимптоту графика функции y = x 1

Разделив числитель на знаменатель по правилу деления многочленов,

2 2

получим y = x  4 + x + 1 Так как x + 1 = 0 при х   , то прямая y = x-4

является асимптотой графика данной функции как при х  + ,

так и при х   .

5

2.1 Геометрический смысл асимптоты

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) – точка графика функции f, М - проекция этой точки на ось Ох, АВ – асимптота,

 - угол между асимптотой и положительным направлением оси Ох,   ,

MP – перпендикуляр, опущенный из точки М на асимптоту АВ, Q – точка пересечения прямой ММ с асимптотой АВ (рис.1).

(рис.1)

Тогда ММ = f (x), QM = kx + l, MQ = MM  QM = f (x) – (kx +l),

MP = MQ cos . Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos , поэтому условия MQ  0 и MP  0 при х    (соответственно при х   ) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот. х   

х   

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х    или, соответственно, х   ).

6

2.2 Общий метод отыскания асимптоты

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х    (при х    рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х   . Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х   . Тогда

lim = k.

х   

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) – kx).

х   

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является

х   

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем

х   

lim f (x)  (kx + l) = 0,

х   

то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim = k. и l = lim (f (x) – kx)

х    х   

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует

представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim = k. и l = lim (f (x) – kx)

х    х   

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) = ,

найденную нами выше другим способом:

7

то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x – 4, как при х   , так и при х  - .

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.

8

3. Виды

3.1 Горизонтальная асимптота

Пусть  lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x  +) (рис.2)

колодки opel vectra поменяем быстро

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»