Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Математика /

Асимптотические методы исследования нестационарных режимов в сетях случайного доступа

←предыдущая следующая→
1 2 3 4 5 6 



Скачать реферат


сети изображена на рис. 2.1.

Рис. 2.1 – Модель системы массового обслуживания

В нестационарном режиме распределение

удовлетворяют системе дифференциально-разностных уравнений вида

(2.1)

где , , , .

Замечание: система уравнений (2.1) получена аналогично системе уравнений (1.1). Вероятности переходов для состояний системы совпадают с точностью до замены .

Систему (2.1) будем решать в условиях перегрузки, то есть при .

Первое приближение

В системе уравнений (2.1) произведем замену переменных: . В результате такой замены производится переход от дискретной переменной к непрерывной переменной , от t перешли к , причем такое, что . После замены производная равна .

Тогда уравнения (2.1) перепишем

(2.2)

Решим систему уравнений (2.2) в два этапа.

1 этап. Считая и предполагая, что будем иметь

(2.3)

.

Выразим через функцию и получим

(2.4)

где асимптотическая плотность распределения нормированного числа заявок в источнике повторных вызовов.

Обозначим

(2.5)

( - это асимптотическая вероятность того, что обслуживающий прибор находится в состоянии k). Заметим, что из системы (2.3) следуют равенства связывающие , и

(2.6)

.

Найдем вид функции , для этого перейдем ко второму этапу.

2 этап. В системе дифференциальных уравнений (2.2) все функции с аргументом разложим в ряд по приращению аргумента , ограничиваясь слагаемыми порядка , получим

(2.7)

Просуммируем левые и правые части уравнений системы (2.7) и получим равенство

. (2.8)

С учетом того, что

равенство (2.8) принимает вид

. (2.9)

Уравнение (2.9) является однородным линейным уравнением с частными производными первого порядка. Для того чтобы его решить составим уравнение

,

его решение , тогда

Общее решение уравнения (2.9) имеет вид

, (2.10)

где - произвольная дифференцируемая функция, аналитическое выражение которой найдем из начальных условий.

Пусть распределение в начальный момент времени где некоторая плотность распределения. Тогда следовательно . Возьмем в качестве начальной плотности распределения , где - дельта-функция Дирака, а , - число заявок в источнике повторных вызовов в начальный момент времени.

Таким образом , из свойств функции Дирака следует, что .

То есть мы получили, что , имеет смысл асимптотического среднего.

Из приведенных рассуждений вытекает еще одно важное следствие, а именно

имеет место , тогда (отрицательная функция противоречит смыслу задачи). В нашем случае совпадает с пропускной способностью системы.

Перейдем ко второму приближению, в котором будем искать распределение отклонения от асимптотического среднего.

Второе приближение

В исходной системе уравнений (2.1) сделаем замену переменных .

Заметим, что в новых обозначениях производная по времени равна . С учетом этого система (2.1) примет вид

(2.11)

Решение системы уравнений (2.11) аналогично решению системы (2.2), но проводится в три этапа.

1 этап. В системе дифференциальных уравнений (2.13) сделаем предельный переход при и предположим, что , получим

(2.12)

.

Решим эту систему аналогично тому, как решили систему уравнений (2.3). Введем функцию и выразим через нее , получим

(2.13)

где асимптотическая плотность распределения отклонения числа заявок в источнике повторных вызовов от асимптотического среднего.

2 этап. Функции будем искать с точностью до в форме

(2.14)

Найдем вид функций , и . Для этого в системе дифференциальных уравнений (2.11) все функции с аргументом разложим в ряд по приращению аргумента , ограничимся слагаемыми порядка . Получим

(2.15)

В уравнения (2.15) подставим в форме (2.14), приведем подобные и получим систему неоднородных линейных алгебраических уравнений относительно вида

,

, (2.16)

Нетрудно увидеть, что между уравнениями этой системы есть зависимость и ранг матрицы системы равен, следовательно, чтобы решение уравнений (2.16)существовало, необходимо выполнение равенства

(2.17)

Из однородного линейного уравнения с частными производными первого порядка (2.9) мы знаем, что . Таким образом, можно сделать вывод, что система (2.16) разрешима. При условии, что функция известна, решение можно записать в виде

,

(2.18)

Теперь все готово, для того, чтобы найти функцию . Перейдем к третьему этапу.

3 этап. В системе дифференциальных уравнений (2.11) все функции с аргументом разложим в ряд по приращению аргумента , ограничиваясь слагаемыми порядка , получим

(2.19)

Теперь подставим в уравнения (2.19) в форме (2.14) и просуммируем левые и правые части уравнений, будем иметь

(2.20)

Подставляя вместо и их выражения, полученные на втором этапе получим для уравнение Фоккера-Планка

, (2.21)

где

Нормированным решением полученного одномерного уравнения диффузии [8] является плотность нормального распределения вероятностей с нулевым средним и дисперсией

. (2.22)

3. Исследование нестационарной сети случайного доступа со статическим протоколом в условиях большой задержки

Исследуем сеть связи, функционирование которой изложено в разделе 1, в условиях большой задержки. В этом случае удобнее рассматривать случай, когда интенсивность каждой заявки в ИПВ равна . Структура такой СМО имеет вид рис. 3.1.

Рис. 3.1 – Модель системы массового обслуживания

Вероятности переходов из состояния системы в произвольный момент времени t в состояние за бесконечно малый интервал времени показаны на рис. 3.2, рис. 3.3, рис. 3.4.

Выпишем уравнения статистического равновесия для нестационарного распределения процесса , описывающего функционирование сети

(3.1)

где

Рис. 3.2 – Возможные переходы из состояния

Рис. 3.3 – Возможные переходы из состояния

Рис. 3.4 – Возможные переходы из состояния

Найти точное аналитическое решение системы (3.1) практически невозможно, но можно решить асимптотически в условиях большой задержки, то есть при .

Первое приближение

Для асимптотического решения системы (3.1) сделаем замену переменных . В результате замены производится переход от дискретной переменной к непрерывной переменной .

В новых обозначениях . Тогда система (3.1) примет вид

(3.2)

Получим вид решения системы (3.2), которую будем решать в два этапа.

1 этап. Считая и предполагая, что , будем иметь

(3.3)

.

Выразим через функцию и получим

(3.4)

где - асимптотическая плотность нормированного числа заявок в источнике повторных вызовов.

Обозначим

(3.5)

Заметим, что из системы (3.3) следуют равенства

(3.6)

.

Осталось найти вид функции . Для этого перейдем ко второму этапу.

2 этап. В системе (3.2) разложим функции по приращению аргумента , ограничиваясь слагаемыми порядка , получим систему

(3.7)

Просуммируем полученные уравнения, поделим на и перейдем . Тогда будем иметь

. (3.8)

С учетом того, что

равенство (3.8) принимает вид

. (3.9)

Таким образом мы получили, что удовлетворяет уравнению Фоккера-Планка с коэффициентом переноса равным , и нулевым коэффициентом диффузии. Из определения для коэффициента переноса можно сделать вывод, что , то есть зависит от времени и – имеет смысл асимптотического среднего, в ее окрестности достаточно долго флуктуируют значения нормированного процесса .

Второе приближение

Зная асимптотическое среднее, найдем

←предыдущая следующая→
1 2 3 4 5 6 



Copyright © 2005—2007 «Mark5»