Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Математика /

Геометрия

←предыдущая  следующая→
1 2 



Скачать реферат


Понятие о центре тяжести было впервые изучено примерно 2200 лет назад грече-ским геометром Архимедом, величайшим математиком древности. С тех пор это по-нятие стало одним из важнейших в механике, а также позволило сравнительно просто решать некоторые геометрические задачи.

Именно приложение к геометрии мы и будем рассматривать. Для этого нужно ввести некоторые определения и понятия. Под материальной точкой понимают точку, снабжённую массой. Для наглядности можно себе физически представить материаль-ную точку в виде маленького тяжёлого шарика, размерами которого можно пренеб-речь. В связи с этим будем часто указывать только числовое значение той или иной физической величины, но не будем отмечать её наименование, считая, что оно само собой подразумевается. Например, выражение: «В  ABC сторона BC равна a, а в вершине A мы помещаем массу a» означает: «Длина стороны BC равна a ñàíòèìåòðàì, à ìàññà, ïîìåù¸ííàя в вершине A, равна a грамм».

Если в точке A помещена масса m, то образующуюся материальную точку будем обозначать так: (A, m). Иногда, когда это не может вызвать недоразумений, мы будем её обозначать одной буквой A. Массу m иногда называют «нагрузкой точки A».

Центром тяжести двух материальных точек (A, a) и (B, b) называется такая тре-тья точка C, которая лежит на отрезке AB и удовлетворяет «правилу рычага»: произ-ведение её расстояния CA от точки А на массу а равно произведению её расстоянию СВ от точки В на массу b; таким образом,

.

Это равенство можно записать и так:

,

то есть расстояние от центра тяжести двух материальных точек до этих точек обратно пропорциональны массам, помещённым в этих точках. Центр тяжести будет ближе к точке с большей массой. Из определения следует: если прямая проходит через центр тяжести двух материальных точек и через одну из них, то она пройдёт и через другую.

Центр тяжести двух материальных точек имеет весьма простой механический смысл. Представим себе жёсткий «невесомый» стержень АВ, в концах которого по-мещены массы а и b (рис. 1). «Невесомость» стержня практически означает, что его масса по сравнению с массами a и b настолько незначительна, что ею можно пренеб-речь. Центр тяжести С материальных точек (A, a) и (B, b) — это такая точка, в которой надо подпереть стержень AB, чтобы он был в равновесии.

А 5 С 15 B

рис. 2

Для дальнейшего полезно также ввести понятие «объединение» или равнодейст-вующей двух материальных точек. Под этим мы будем понимать материальную точку, которая получится, если в центре тяжести двух материальных точек поместить массы обеих точек.

A C B

рис. 1

Пример. Пусть в концах невесомого тонкого стержня AB (рис. 2), длина которого равна 20 ед. Помещены такие массы: в A — 6 ед., в B — 2 ед. Центром тяжести материальных точек (A, 6) и (B, 2) будет точка C, лежащая на стержне AB, определяемая условием: 6CA=2CB, или CB=3CA. Поэтому АВ=CB+CA=4AC. Отсюда (ед.). Объединение материальных точек (A, 6) и (B,2) будет матери-альная точка (С, 8).

Центр тяжести трёх материальных точек находится следующим образом: нахо-дят объединение двух из этих материальных точек и затем ищут центр тяжести обра-зовавшейся таким образом четвёртой материальной точки и третей из данных матери-альных точек.

Вообще, центр тяжести n материальных точек при n>2 находится так: надо сна-чала найти центр тяжести n-1 материальных точек, поместить в этой точке массы всех n-1 точек, затем найти центр тяжести этой вновь образовавшейся материальной точки с n-й материальной точкой.

Если поместить в центре тяжести несколько материальных точек массы всех этих точек, то образующуюся таким образом новую материальную точку назовём объ-единением данных материальных точек.

Для решения задач важны следующие простейшие свойства центров тяжести.

I. Положение центра тяжести n материальных точек не зависит от порядка, в ко-тором последовательно объединяются эти точки. (Теорема о единственности центра тяжести для системы из n материальных точек.)

II. Положение центра тяжести системы из n материальных точек не изменится, если заменить несколько материальных точек их объединением. (Теорема о возмож-ности группировки материальных точек.)

При рассмотрении некоторых вопросов механики оказывается выгодным ввести понятие статического момента.

Пусть имеется некоторая точка C и, кроме того, материальная точка A(A, m). Статическим моментом материальной точки А относительно точки С мы назовём произведение mCA и будем его кратко обозначать так: МомСА.

Пользуясь понятием статического момента, определение центра тяжести можно сформулировать так: точка С называется центром тяжести двух материальных точек A(A, m1) и B(B, m2), если С лежит на отрезке АВ и МомСА=МомСB.

Пусть теперь на некотором луче с началом S (рис. 3) расположена система из не-которых n материальных точек

A1(A1, m1), A2(A2, m2), …, An(An, mn).

S A4 A3 A2 A1 An

рис. 3

Статическим моментом этой системы относительно начала луча S называют сумму моментов всех точек системы относительно начала луча,

т.е. сумму K=МомSA1+ МомSA2+ МомSA3+…+ МомSAn или, подробнее,

K=m1SA1+ m2SA2+ m3SA3+…+ mnSan.

Пример. Если система состоит из трёх точек (A1, 1), (A2, 4), (A3, 9) и SA1=1, SA2=2, SA3=3 (рис. 4), то статический момент системы равен

K=11 + 42 + 93 = 36.

Понятно, что в системе SGC момент будет иметь размерность гсм. Но мы ранее договорились, что размерность будем каждый раз подразумевать, но нигде не указы-вать.

S A1 А2 A3

рис. 4

В наших рассуждениях основными объектами были «материальные точки». С точки зрения математики материальная точка — это комплекс, состоящий из геомет-рической точки и некоторого (положительного) числа.

В математике не раз приходится сталкиваться с таким явлением: комплекс из двух каких-то математических объектов рассматривают как некоторый новый объект, который затем уже подвергается специальному изучению. Так, например, в курсе ал-гебры вводится понятие комплексного числа как комплекса (пары) двух действитель-ных чисел.

В строгих курсах геометрии таким образом вводится, например, понятие отрезка как комплекса (пары) двух точек; понятие угла может быть введено сходным образом: угол можно рассматривать как комплекс двух лучей с общим началом.

Если имеется у нас какая-либо материальная точка А(A, m), то мы (геометриче-скую) точку A будем иногда называть носителем или аффиксом этой материальной точки, а число m будем по-прежнему называть массой этой материальной точки.

Равенству вида (A, a)(B, b) мы придаём такой смысл: две материальные точки имеют один и тот же носитель (AB) и равные массы (ab).

Решение почти всех ранее рассмотренных задач опиралось на то, что мы «объе-диняли некоторые материальные точки в их центре тяжести»; точнее, заменяли неко-торые материальные точки их объединением. При этом под объединением двух мате-риальных точек (A, a) и (B, b) мы понимали некоторую новую материальную точку (С, a+b), где С — центр тяжести двух данных материальных точек. Можно было бы так сказать: объединением двух материальных точек называется такая новая материальная точка, носителем которой является центр тяжести данных материальных точек и мас-са которых равна сумме масс этих материальных точек.

Вместо «объединения» можно употреблять выражение «сумма».

Если материальная точка С(С, с) является объединением двух других матери-альных точек A(A, a) и B(B, b), то мы будем это записывать так:

(A, a) + (B, b) = (C, c)

или, короче,

A + B = C.

Мы не будем исключать и тот случай, когда две материальные точки имеют один и тот же носитель. В этом случае, естественно, будем считать носителем объединения их общий носитель. Таким образом, (А, а) + (А, b) = (A, a+b).

У нас возникает своеобразное исчисление, своеобразная алгебра. В этой алгебре имеет место переместительный закон: A + B = B + A. Это следует из самого определе-ния центра тяжести двух материальных точек. Имеет место также сочетательный за-кон:

(A1 + A2) + A3 = A1 + (A2 + A3),

или, иначе,

[(A1, m1) + (A2, m2)] + (A3, m3) = (A1, m1) + [(A2, m2) + (A3, m3)].

Подробнее: Найдём ли мы сначала объединение ¬¬¬A12 двух материальных точек А1 и А2 и затем найдём объединение этой материальной точки А12 с третьей материаль-ной точкой А3, или сначала найдём объединение А23 материальных точек А2 и А3, а затем найдём объединение материальных точек А1 и А23, в обоих случаях мы придём к одному и тому же результату, к одной и той же материальной точке.

Понятно, что смысл этого утверждения состоит в том, что центр тяжести трёх материальных точек не зависит от порядка, в котором объединяются эти точки.

В наших рассуждениях «материальная точка» (A, m) выступала как комплекс, со-стоящий из некоторой геометрической точки А и некоторого положительного числа т. Это число т мы до сих пор называли массой. Однако его можно было бы назвать и каким-либо другим словом, скажем, «весом». Все наши предыдущие рассуждения ос-танутся,

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»