Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Математика /

Курс лекций по теории вероятностей

←предыдущая  следующая→
1 2 3 4 5 6 7 8 9 



Скачать реферат


Раздел 1. Классическая вероятностная схема

1.1 Основные формулы комбинаторики

В данном разделе мы займемся подсчетом числа «шансов». О числе шансов говорят, когда возможно несколько различных результатов какого-либо действия (извлечение карты из колоды, подбрасывание кубика или монетки, двух кубиков и т.д.). Число шансов — это число таких возможных результатов, или, иначе говоря, число способов проде-лать это действие.

Теорема о перемножении шансов

Теорема 1. Пусть имеется, k групп элементов, причем i-я группа содержит ni элементов, 1 np + p - 1,либо одно «наиболее вероятное» число успехов k0 = [np + p].

Сформулируем уже доказанное утверждение в виде теоремы.

Теорема 12. В n испытаниях схемы Бернулли с вероятностью успеха p наиболее вероятным числом успехов является

a) единственное число k0 = [np + p], если число np + p не целое;

б) два числа k0 = np + p и k0 -1= np + p -1, если число np + p целое.

Пример 19. Если p = q = 1/2, то при четном числе испытаний n число np + p = n/2 + 1 /2— не целое, так что наиболее вероятным является единственное число успехов [n/2 + 1 /2] = n/2. Что совершенно понятно, так как есть нечетное число возможностей — получить 0, 1, …n успехов, причем вероятности получить k и n-k успехов одинаковы.

При нечетном же числе испытаний n число np + p = n/2 + 1 /2 — целое, так что наиболее вероятными (и одинаково вероятными) являются два числа успехов n/2 + 1 /2 и n/2 - 1 /2.

5.3 Номер первого успешного испытания

Рассмотрим схему Бернулли с вероятностью успеха p в одном испытании. Испытания проводятся до появления первого успеха. Введем величину τ , равную номеру первого успешного испытания.

Теорема 13. Вероятность того, что первый успех произойдет в испытании с номером k, равна

P(τ = k) = p qk-1.

Доказательство. Действительно,

Определение 21. Набор чисел {p qk-1 } называется геометрическим распределением вероятностей и обо-значается Gp или G(p).

Геометрическое распределение вероятностей обладает интересным свойством, которое можно назвать свойст-вом «нестарения». Пусть величина τ обозначает, скажем, время безотказной работы (измеряемое целым числом часов) некоторого устройства. Предположим, что для величины τ вероятность принять любое свое значение k в точности равна pqk-1. Справедливо следующее утверждение.

Теорема 14. Пусть P(τ = k) = p qk-1. Тогда для произвольных n, k  0

P(τ > n+k τ > n) = P(τ > k)

Данному равенству можно придать следующее звучание: если известно, что устройство проработало без от-казов n часов, то вероятность ему работать еще не менее k часов точно такая же, как вероятность проработать не менее k часов для нового устройства.

Можно прочесть эту формулу и так: вероятность работающему устройству проработать еще сколько-то ча-сов не зависит от того момента, когда мы начали отсчет времени, или от того, сколько уже работает устройст-во.

Доказательство. По определению условной вероятности,

(4)

Последнее равенство следует из того, что событие {τ > n+k} влечет событие {τ > n}, так что пересечение этих событий есть {τ > n+k}. Найдем для произвольного m  0 вероятность P(τ > m).

Можно также заметить, что событие {τ > m} означает, что в схеме Бернулли первые m испытаний за-вершились «неудачами», а это событие имеет вероятность как раз qm.

Возвращаясь к (4), получим

5.4 Приближение гипергеометрического распределения биномиальным

Рассмотрим урну, содержащую N шаров, из которых K шаров — белые, а оставшиеся N-K шаров — черные. Из урны наудачу (без возвращения) выбираются n шаров. Вероятность PN,K(n, k) того, что будет выбрано ровно k белых и n-k черных шаров, находится по формуле (см. определение 8 гипергеометрического распределения вероятно-стей):

Если число шаров в урне очень велико, то извлечение одного, двух, трех шаров почти не меняет пропорцию бе-лых и черных шаров в урне, так что вероятности PN,K(n, k) не очень отличаются от вероятностей в процедуре выбора с возвращением

P(получить ровно k белых шаров при выборе n шаров с возвращением) =

Сформулируем нашу первую предельную теорему.

Теорема 15. Если N → ∞ и K → ∞ так, что K/N → p  (0, 1) то для любых фиксированных n, 0 0— некоторая постоянная. Набор чисел называется распределением Пуассона с параметром λ.

Пользуясь теоремой 17, можно приближенно посчитать вероятность получить не менее десяти успехов в 1000 испытаний схемы Бернулли с вероятностью успеха 0.003, с вычисления которой мы начали. Поскольку n = 1000 «ве-лико», а pn = 0.003 «мало», то, взяв λ = n pn = 3 , можно написать приближенное равенство

(6)

Осталось решить, а достаточно ли n=103 «велико», а pn = 0.003 «мало», чтобы заменить точную вероятность P(vn = k) на приближенное значение

Для этого нужно уметь оценивать разницу между этими двумя вероятностями.

Теорема 18 (Теорема Пуассона с оценкой погрешности).

Пусть A  {0, 1, …, n} — произвольное множество целых неотрицательных чисел, vn — число успехов в n испытаниях схемы Бернулли с вероятностью успеха p, λ = n p. Тогда

Таким образом, теорема 18 предоставляет нам возможность самим решать, достаточно ли n «велико», а p «ма-ло», руководствуясь полученной величиной погрешности.

Какова же погрешность в формуле (6)?

Погрешность не более 0,009 (при вероятности около 0,001). Во всяком случае, можно утверждать, что искомая вероятность никак не больше, чем 0,01=0,001+0,009.

Рассмотрим еще одну формулу приближенного вычисления pn (m) когда n велико. В отличии от предыдущего результата число успехов m в этом случае тоже растет с ростом n, а вероятность успеха постоянна.

Локальная теорема Муавра – Лапласа

Пусть .Предположим, что и величины являются ограниченными. Тогда

В частности, если , то

Доказательство:

В силу ограниченности величин разность вместе с n и m Воспользуемся формулой Стирлинга

В силу определения

Раздел 6. Случайные величины и их распределения

6.1 Случайные величины

Мы уже видели, что для очень многих экспериментов нет никаких различий в подсчете вероятностей событий, тогда как элементарные исходы в этих экспериментах очень различаются. Но нас и должны интересовать именно ве-роятности событий, а не структура пространства элементарных исходов. Поэтому пора во всех таких «похожих» экс-периментах вместо самых разных элементарных исходов использовать, например, числа. То есть ввести соответствие (иначе говоря, отображение) между элементарными исходами и вещественными числами (с ними удобно работать).

Пусть имеется случайный эксперимент и задано вероятностное пространство (Ω, Ψ,Р).

Определение 23. Функция ξ: Ω →R называется случайной величиной, если для любого х  R множество { ξ < x} = {ω: ξ(ω) < x} является событием, то есть принадлежит σ-алгебре событий Ψ.

Замечание 10. Можно смело считать, что любое множество элементарных исходов есть событие, и, следова-тельно, случайная величина есть произвольная функция из Ω в R. Никаких неприятностей на практике это обычно не влечет.

Определение 24. Будем говорить, что функция ξ: Ω →R является Ψ -измеримой, если {ω: ξ(ω) < x} при-надлежит Ψ для любого х  R.

Итак, случайная величина есть Ψ - измеримая функция, ставящая в соответствие каждому элементарному ис-ходу ω  Ω число ξ(ω)  R.

Пример 21. Подбрасываем 1 раз кубик. Пусть Ω = {1, 2, 3, 4, 5, 6} , и две функции из Ω в заданы так: ξ(ω)= ω , η(ω)= ω2.

Если Ψ есть множество всех подмножеств Ω, то ξ и η являются случайными величинами, поскольку любое множество элементарных исходов принадлежит Ψ, в том числе и {ω: ξ(ω) < x} или {ω: η (ω) < x} . Можно запи-сать соответствие между значениями случайных величин ξ и η вероятностями принимать эти значения в виде «таб-лицы распределения вероятностей» или, коротко, «таблицы распределения»:

ξ 1 2 3 4 5 6

Р 1/6 1/6 1/6 1/6 1/6 1/6

η 1 4 9 16 25 36

Р 1/6 1/6 1/6 1/6 1/6 1/6

Здесь 1/6 = Р(ξ=1)=…= Р(ξ=6) = Р(η =1)= …= Р(η =36)

Пусть σ -алгебра событий Ψ состоит всего из четырех множеств:

Ψ = { Ω ,, {1,3,5},{2,4,6} }

то есть событием является, кроме достоверного и невозможного событий, выпадение четного (соответственно, нечетного) числа очков. Убедимся, что при такой «бедной» σ -алгебре ни ξ, ни η не являются случайными величина-ми, так как эти функции не Ψ - измеримы. Возьмем (например) x = 3,967. Видим, что

{ω  Ω: ξ(ω) < 3,967}= {1, 2, 3} Ψ и {ω  Ω: η (ω) < 3,967}= {1} Ψ

Теперь попробуем понять, зачем нужна Ψ - измеримость

←предыдущая  следующая→
1 2 3 4 5 6 7 8 9 



Copyright © 2005—2007 «Mark5»