Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Математика /

Формула Шлетца

←предыдущая  следующая→
1 2 3 



Скачать реферат


КОМИТЕТ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ.

КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ.

§1. Пространство R(p1,p2).

А1- аффинная прямая. Отнесем прямую А1 к подвижному реперу r = {a,e}, где а иe соответственно точка и вектор.

Деривационные формулы репера r имеют вид:

d a= e , de= We (1),

причем формы Пфаффа  и W подчиняются уравнениям структуры 1-мерного аффинного пространства :

D  = W , DW=WW=0.

Пусть e* - относительная длина вектора e* =e + de + 1/2d2e + 1/6d3e +... по отношению к вектору е. Тогда e* =e*e. Из (1) получаем :e* =1+W+... Таким образом, форма Пфаффа W является дифференциалом относительной длины вектора e* , близкого к e , по отношению к e.

Пусть R(p1,p2) – пространство всех пар (p1,p2) точек p1,p2 прямой А1. Поместим начало а репера r в середину Q отрезка р1р2, а конец вектора е – в точку р1; при этом р2 совместится с концом вектора -е.

Условия стационарности точек р1 и р2 в таком репере имеют соответственно вид: W+=0, -W+=0.

Таким образом , в репере r структурными формами пространства R(р1,р2) являются формы Пфаффа : W+ , -W+.

Очевидно, что dim R(p1,p2)=2. Заметим ,что в репере r форма 2W является дифференциалом относительной длины отрезка р1*р2*, близкого к р1р2,по отношению к р1р2.

§ 2. Отображение f.

А2 – аффинная плоскость , отнесенная к подвижному реперу R={p,ej}. Деривационные формулы репера R и уравнения структуры плоскости А2 имеют соответственно вид :dp=Wjej ; dej= Wj k;

DWj=Wk^Wkj ; DWj=Wjy^Wyk .

Рассмотрим локальное дифференцируемое отображение f плоскости А2 в пространстве R(p1,p2):f:A2R(p1,p2).

Будем считать , что в каждой точке области определения отображения f выполняется : rang f=2 (1)

Поместим начало Р репера R в точку f-1(p1,p2). Тогда дифференциальные уравнения отображения f запишутся в виде :

Q+W=jWj ; Q-W=jWj (2)

Из (1) вытекает , что существует локальное дифференцируемое отображение f-1: R(p1,p2)A2 обратное к f.В указанных реперах дифференциальные уравнения отображения f-1 имеют вид :

Wj=j(Q+W)+j(Q-W) (3)

Из (2) и (3) получаем :

kj+kj=jk

jj=1

jj=1 (*)

jj=0

jj=0

Указанную пару {r;R} реперов пространств А1 и А2 будем называть репером нулевого порядка отображения f.

§3.Фундаментальные геометрические объекты отображения f.

Осуществим продолжение системы (2) дифференциального уравнений отображения f.

D(λjWj-W-Q)=0,

получаем :

dλj=λkWjk+14(λjμk-λkμj)Wk+λjkWk

D(μjWj+W-Q)=0

получаем :

dμj=μkWjk+14(λjμk-λkμj)Wk+μjkWk

Итак, продолженная система дифференциальных уравнений отображения f имеет вид :

Q+W=λjWj

Q-W=μjWj

dλj=λkWjk+14(λjμk-λkμj)Wk+λjkWk

dμj=μkWjk+14(λjμk-λkμj)Wk+μjkWj

Из этих уравнений вытекает, что система величин Г1={λj,μj} является геометрическим объектом. Он называется фундаментальным геометрическим объектом первого порядка отображения f. Осуществим второе продолжение системы (2) :

dλk^Wjk+λkdWjk+14(λjμk-λkμj)^Wk+14(λjμk-λkμj)dWk+dλjk^Wk+λjkdWk=0.

получим:

(dλjt-λktWjk-λjkWtk+14(λkμjt-μkλjk)Wk+116λtμk(λj-μj)Wk)^Wt=0

dμk^Wjk+μkdWjk+14d(λjμk-λkμj)^Wk+14(λjμk-λkμj)dWk+dμjk^Wk+μjkdWk=0

получим:

(dμjt-μktWjk-μjtWtk+14(λkμjt-μkλjt)Wk+116λtμk(λj-μj)Wk)^Wt=0

обозначим:

λj=dλj-λtWjt

μj=dμj-μtWjt

λjk=dλjk-λtkWkt-λjtWkt

μjk=dμtkWjt-μjtWkt

Тогда дважды продолженная система дифференциальных уравнений отображения f примет вид:

Q+W=λjWj

Q-W=μjWj

dλj=λkWjk+14(λjμk-λkμj)Wk+λjkWk

dμj=μkWjk+14(λjμk-λkμj)Wk+μjkWk (4)

λjk=(14(μαλjk-λαμjk)+116λkμα(μj-λj)+λjkα)Wα

μjk=(14(μαλjk-λαμjk)+116λkμα(μj-λj)+μjkα)Wα

Из уравнений (4) вытекает, что система величин Г2={λj,μj,λjk,μjk} образует геометрический объект. Он называется фундаментальным геометрическим объектом второго порядка отображения f. Дальнейшее продолжение системы (2) приведет к фундаментальному геометрическому объекту ГР порядка р :

ГР={λj,μj,λj1j2,μj1j2,...,λj1j2...jp,μj1j2...jp}.

§ 4. Векторы и ковекторы первого порядка.

Из системы дифференциальных уравнений (5) вытекает, что система величин {λj},{μj} образует подобъекты геометрического объекта Г1. Будем называть их основными ковекторами 1-го порядка. Основные ковекторы определяют для каждой точки P две инвариантные прямые:

λjXj=1 ; μjXj=1 (6)

не инцидентные точке Р. Из условия rang f=2 и уравнения (2) вытекает, что прямые (6) не параллельны. Условия (*) показывают, что величины {λj,μj} являются компонентами матрицы ,обратной к матрице, составленной из координат основных ковекторов. Таким образом , величины {λj,μj} охватываются объектом Г1.

Из (*) получаем:

dλj=-λkWkj-14(λj+μj)μtWt-λktλkλtWt-μktWt^λkμj

dμj=-μkWkj-λktμkλjWt-μktμkμjWt+14λt(λj+μj)Wt

Таким образом , система величин и образуют геометрические объекты, охваченные объектом Г1. Будем называть их основными векторами 1-го порядка.

Предположение 1.Конец вектора v1=λjej (вектора v2=μjej) лежит на прямой (6). Доказательство вытекает из формул (*),(2). Прямые, параллельные прямым (6), инцидентные точке Р, определяются соответственно уравнениями:

λjXj=0 , μjXj = 0 (7).

Предположение 2. Основные векторы {λj} и {μj} параллельны прямым (6) соответственно. Доказательство вытекает из формул (*) и (7). Взаимное расположение рассмотренных векторов и прямых представлено на рисунке:

λjXj=1

V2

V1 μjXj=1

Система величин ρj=λj-μj образует ковектор: dρj=ρkWjk+(μjk-λjk)Wk.

Определяемая им прямая ρjXj=0 (8) проходит через точку Р и точку пересечения прямых (6).

Пусть W-однородное подмногообразие в R(p1,p2) содержащее элементы (р1,р2) определяемое условием: (р1*,р2*)∈W↔p1*p2*=p1p2.

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»