Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Математика /

Различные подходы к определению проективной плоскости

Документ 1 | Документ 2

←предыдущая  следующая→
1 2 3 4 5 6 7 8 



Скачать реферат


Содержание

Введение

Исторический обзор аксиоматического построения проективной геометрии

Глава 1. Определение проективной плоскости на базе трехмерного

векторного пространства.

1.1. Понятие проективной плоскости.

1.2. Свойства проективной плоскости.

1.3. Модели проективной плоскости.

1.4. Теорема Дезарга.

1.5. Теорема Паппа.

Глава 2. Аналитическое построение проективной плоскости.

2.1. Понятие проективной плоскости.

2.2. Свойства проективной плоскости.

2.3. Теорема Дезарга.

Глава 3. Аксиоматическое построение проективной плоскости.

3.1. Аксиоматика аффинной плоскости.

3.2. Аксиоматика проективной плоскости.

3.3. Модели проективной плоскости.

3.4. Теорема Дезарга.

3.5. Принцип двойственности.

3.6. Гармоническая четверка точек.

3.7. Перспективные и проективные отображения.

3.8. Аксиома Паппа и основная теорема о проективных преобразованиях прямой.

Глава 4. Применение основных теорем к решению задач на евклидовой плоскости.

4.1. Использование теоремы Дезарга на евклидовой плоскости.

4.2. Использование предложения Паппа на евклидовой плоскости.

Приложения

Список литературы 4

5

5

5

8

12

14

17

17

18

20

23

23

24

24

26

30

32

34

37

42

42

43

46

56

Введение

Понятие проективной плоскости можно ввести многими способами. Проективную плоскость можно построить на базе трехмерного векторного пространства, аналитически и аксиоматически.

В данной работе, в ее первой главе, проективная плоскость Р2 строится на базе трехмерного векторного пространства, рассматриваются свойства проективной плоскости и ее модели. В конце главы доказываются теоремы: Дезарга и Паппа.

Во второй главе проективная плоскость рассматривается как множество проективных точек, каждая из которых представляет собой класс пропорциональных троек действительных чисел, не содержащей нулевой тройки. При данном подходе к построению проективной плоскости рассматриваются свойства, доказывается теорема Дезарга.

В третьей главе уделяется внимание построению проективной плоскости аксиоматически. Прежде чем определить проективную плоскость, вводится аксиоматика аффинной плоскости. После определения проективной плоскости рассматриваются 4 ее модели. Особое внимание уделяется теореме Дезарга. На основе изложенного в третьей главе материала делается вывод о двойственности на проективной плоскости. В этой главе также определяются понятия: гармоническая четверка точек, перспективные и проективные отображения. Завершает главу аксиома Паппа и основная теорема о проективных преобразованиях прямой.

Глава четвертая изучает использование теорем Дезарга и Паппа на евклидовой плоскости. После чего приводятся решения задач, при решении которых использовались доказанные выше теоремы.

Вся история геометрии дает поучительный пример того, как эта наука материальные корни которой берут свое начало из жизненных потребностей человеческого общества (землемерие, постройка жилищ, живопись), достигла высокого теоретического уровня, выработала свои специфические и вместе с тем весьма общие методы, которые в свою очередь сделали возможным новые плодотворные применения геометрии к практическим вопросам.

Исторический обзор аксиоматического построения

проективной геометрии.

Имеются различные аксиоматические способы построения проективного пространства. Наиболее распространенным является видоизменение системы аксиом, предложенной в 1899 году Гильбертом для обоснования элементарной геометрии.

Проективное пространство рассматривается как совокупность элементов трех родов: точек, прямых и плоскостей, между которыми установлено основное для проективной геометрии отношение инцидентности, характеризующееся надлежащими аксиомами. Они отличаются от соответствующих групп аксиом элементарной геометрии, тем, что требуют, чтобы каждые две прямые, лежащие в одной плоскости, имели общую точку и на каждой прямой имелось, по крайней мере, три различные точки. В конкретных случаях для получения более «богатой» проективной геометрии эта совокупность аксиом дополняется аксиомами порядка и непрерывности (для действительного проективного пространства), аксиома Паппа (для проективной геометрии над коммутативными телами), Фано постулатом (для проективной геометрии над телами, характеристика которого порядка 2) и т.д.

Замечательным положением проективной геометрии является принцип двойственности. Говорят, что точка и прямая (точка и плоскость, прямая и плоскость) инцидентны, если точка лежит на прямой (или прямая проходит через точку и т.д.). Тогда если верно некоторое предположение А о точках, прямых и плоскостях проективного пространства, сформулированные только в терминах инцидентности между ними, то будет верно и двойственное предложение В, которое получается из А заменой слова «точка» на слово «плоскость», слово «плоскость» на слово «точка» и с сохранением слова прямая.

Важную роль в проективной геометрии играет Дезарга предложение, выполнение которого необходимо и достаточно для введения проективными средствами системы проективных координат, составленных их элементов некоторого тела К, естественным образом связанного с точкой проективной прямой.

Основы проективной геометрии заложены в 17в Ж. Дезаргом и Б. Паскалем. Большое значение для последующего развития проективной геометрии имели работы П. Монтена (2-я полов. 18в – нач. 19в).

Как самостоятельная дисциплина проективная геометрия была изложена Понселе (нач. 19в). Заслуга Ж. Понселе заключается в выделении проективных свойств фигур в отдельный класс, и установлении соответствий между метрическими и проективными свойствами этих фигур.

К этому же периоду относятся работы Ж. Брионшона. Дальнейшее развитие проективная геометрия получила в трудах Я. Штейнера и М. Шаля. Большую роль в развитии проективной геометрии сыграли работы К. Штаудта, в которых были намечены также контуры аксиоматического построения проективной геометрии.

Все эти геометрии, стремились доказать теоремы проективной геометрии синтетическим методом, положив в основу изложенные проективные свойства фигур.

Аналитическое направление в проективной геометрии было намечено работами А. Мебиуса. Влияние на развитие проективной геометрии оказали работы Н.И. Лобачевского по созданию неевклидовой геометрии, позволившие в дальнейшем А. Кэли и Ф. Клейну рассмотреть различные геометрии, систематизировать с точки зрения проективной геометрии.

Развитие аналитических методов обычной проективной геометрии и построение на этой базе комплексной проективной геометрии поставили задачу о зависимости тех или иных проективных свойств от того тела, над которым построена геометрия. В решении этого вопроса больших успехов добились А.Н. Колмогоров и Л.С. Понтрягин.

Глава 1. Определение проективной плоскости

на базе трехмерного векторного пространства.

1.1. Понятие проективной плоскости.

Рассмотрим определение проективной плоскости Р2. Понятие проективной плоскости строится на базе трехмерного векторного пространства V3.

Определение: Не пустое множество Р2 называется проективным плоскостью, если существует отображение  множества ненулевых векторов V3 в Р2 удовлетворяющее двум условиям:

1) Отображение  сюрьективно.

2) Образы 2-х векторов совпадают, эти векторы линейно зависимы.

(х)=(у) х,у – линейно зависимы.

1.2. Свойства проективной плоскости.

Рассмотрим свойства проективной плоскости Р2.

1) Через  две () проективной плоскости проходит единственная прямая.

Доказательство: Рассмотрим проективную плоскость Р2 построенную на базе V3.

Пусть точка А порождена векторомаV3т.е. (а)=А).

() В порождена bV3(т.е. (b)=В);

a  b т.к. порождают различные точки. Тогда на вектора a,b можно натянуть двумерное векторное пространство L(a,b), которое на проективной плоскости порождает прямую l. Очевидно прямая l проходит через () А и В.

V1(а)=A V1V2  A l

V1(b)=B V1'V2  B l

Единственность: Действительно, пусть l'- произвольная прямая проходящая через () А и В, а L'- двумерное подпространство, которое порождает прямую l' так как Аl' и Вl', то аL' и bL'  L' - подпространство натянутое на векторы а и b. Таким образом L и L'- одно и тоже векторное подпространство  прямые l и l' совпадают.

2) На проективной плоскости две прямые пересекаются.

Доказательство:

Р2 построено на базе V3

прямая l -V2 V3

прямая m -V2' V3

1) V2V2',

←предыдущая  следующая→
1 2 3 4 5 6 7 8 



Copyright © 2005—2007 «Mark5»