Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Программированиеи компьютеры /

Арифметические основы ЦВМ

←предыдущая  следующая→
1 2 3 4 5 



Скачать реферат


АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЦВМ

1.1. Системы счисления

В повседневной практике для представления чисел люди пользуются почти исключительно десятичной системой счисления. Лишь в редких случа-ях встречаются остатки других систем - римский счет, двенадцатиричная сис-тема (часы), шестидесятиричная (минуты).

Однако система изображения чисел, которая веками складывалась применительно к ручному труду, не позволяет получить наиболее эффектив-ные методы выполнения вычислений. По этой причине в вычислительной технике применяются другие системы счисления и чаще всего - двоичная.

Введем несколько определений.

Cистема счисления - совокупность символов и правил для обо-значения чисел.

Разделяют системы счисления позиционные и непозиционные. Непо-зиционная система счисления задается перечислением изображаемых в ней значений. Позиционная система счисления характеризуется основанием и тем, что числа, как правило, представляются несколькими разрядами (яв-ляются многоразрядными), а вес любого разряда определяется его позицией в числе.

Oснование позиционной системы счисления определяет количество различных цифр (символов), допустимое в системе счисления. Это же чис-ло определяет, во сколько раз вес цифры данного разряда меньше веса циф-ры соседнего старшего разряда.

Так, в десятичной системе счисления, основание которой равно 10, различают 10 арабских цифр - 0, 1, 2, ..., 9. Следовательно, при ее использо-вании для записи числа, не превышающего девяти, достаточно одной циф-ры, и такое число записывается как одноразрядное. А в случае записи чис-ла, большего девяти, оно представляется как многоразрядное. При этом вес каждого более старшего (расположенного слева от текущего) разряда в десять (основание системы счисления) раз больше текущего.

Так, например, число 359 - трехразрядное, и в нем 9 - цифра разряда единиц, 5 - цифра разряда десятков, 3 - цифра разряда сотен (в 10 раз пре-вышает вес разряда десятков). При этом значение трехразрядного числа 359 получается суммированием трех слагаемых : 3 сотни + 5 десятков + 9 еди-ниц.

Общее правило определения веса разряда многоразрядного числа тако-во:

Если пронумеровать разряды целого числа справа налево, на-чиная от 0 для разряда единиц, то вес любого разряда получает-ся возведением основания системы счисления в степень, зна-чение которой равно номеру разряда.

Так, вес самого младшего разряда целых чисел равен 1, поскольку но-мер разряда равен 0, а любое число, в том числе и число 10, возведенное в нулевую степень, дает в результате единицу. Вес следующего слева разряда равен 10 в степени 1, т.е. равен десяти, и т.д.

Это же правило справедливо и для записи дробных чисел. При этом разрядам справа от разряда единиц, имеющего номер 0, присваиваются от-рицательные значения: -1, -2, и т.д., а их веса получаются также при возведе-нии основания 10 в соответствующую степень. Так, например, вес третьего разряда в дробной части числа 42,9724 будет равен 10 в степени (-3), т.е. равен одной тысячной.

Указанное правило можно проиллюстрировать следующим образом:

Число 7 5 0 6 8 , 2 5 9

Номер разряда 4 3 2 1 0 -1 -2 -3

Вес разряда 10000 1000 100 10 1 0,1 0,01 0,001

Как видно из примера, в позиционной системе счисления достаточно знать значение основания системы счисления, символы, изображающие от-дельные цифры, и указанное правило, чтобы представить любое число.

В вычислительной технике широко применяют двоичную, восьмерич-ную и шестнадцатиричную систему счисления.

Двоичная система счисления имеет основание 2, и, следовательно, две раз-ных цифры - 0 и 1; восьмеричная - восемь разных цифр - 0, 1, 2, 3, 4, 5, 6, 7, а шестнадцатиричная - шестнадцать цифр - десять арабских цифр от 0 до 9 и еще шесть символов -

А (цифра, изображающая десять), D (цифра тринадцать),

В (цифра одиннадцать), E (цифра четырнадцать),

С (цифра двенадцать), F (цифра пятнадцать).

Проще всего сопоставить запись одних и тех же чисел в этих системах счисления можно с использованием таблицы 1, приведенной на следующей странице.

Мы уже говорили о том, что современные цифровые ЭВМ все исполь-зуют в качестве основной двоичную систему счисления. К ее достоинствам относится:

• простота выполнения арифметических и логических операций, что вле-чет за собой простоту устройств, реализующих эти операции;

• возможность использования аппарата алгебры логики (булевой алгебры) для анализа и синтеза операционных устройств ЭВМ.

К неудобствам двоичной системы счисления относится необходимость перевода чисел из десятичной в двоичную и наоборот, а также то, что за-пись числа в двоичной системе громоздка (требует большего числа разрядов, чем привычная для человека десятичная). По этой и ряду других причин, кроме двоичной применяются восьмеричная и шестнадцатиричная системы счисления.

Таблица 1.1

С и с т е м а с ч и с л е н и я

10 2 8 16

0 0 0 0

1 1 1 1

2 0 1 2 2

3 1 1 3 3

4 1 0 0 4 4

5 1 0 1 5 5

6 1 1 0 6 6

7 1 1 1 7 7

8 1 0 0 0 1 0 8

9 1 0 0 1 1 1 9

10 1 0 1 0 1 2 A

11 1 0 1 1 1 3 B

12 1 1 0 0 1 4 C

13 1 1 0 1 1 5 D

14 1 1 1 0 1 6 E

15 1 1 1 1 1 7 F

16 1 0 0 0 0 2 0 1 0

Совместное использование указанных систем обусловлено двумя при-чинами:

• в восьмеричной и шестнадцатиричной системах любое число записыва-ется более компактно, нежели двоичное;

• простотой преобразования из двоичной в восьмеричную (шестнадцати-рич-ную) систему счисления и наоборот.

Приведем правила перевода чисел из двоичной системы в восьмерич-ную (шестнадцатиричную) и наоборот.

П1 .Правило перевода “8с/с -> 2c/c”

При переводе многоразрядного числа каждую цифру исходного вось-меричного числа представить всегда точно тремя двоичными цифрами, взятыми из приведенной выше таблицы. При этом, если для записи соответ-ствующей восьмеричной цифры в виде двоичной требуется менее трех дво-ичных цифр, двоичный эквивалент дополняется слева нулями (незначащие нули не исказят значения числа). Таким образом, например, при записи че-тырехразрядного восьмеричного числа должно получиться двенадцатираз-рядное двоичное. После окончания такого преобразования можно отбросить старшие для всего числа незначащие двоичные цифры.

Отметим, что три цифры принято называть триадой. Поэтому можно сказать, что при описываемом переводе каждая восьмеричная цифра заменя-ется соответствующей ей триадой двоичных цифр.

Если исходное число дробное, т.е. имеет целую и дробную часть, то в двоичном числе запятая ставится между триадами, представляющими соответствующие цифры исходного числа.

Пример.

Преобразуем восьмеричное число 371,62.

Для этого запишем для каждой цифры соответствующую триаду:

3 --> 011

7 --> 111

1 --> 001

6 --> 110

2 --> 010

Теперь можно записать число в двоичной форме (для наглядности между триадами поместим пробелы):

371,62 -> 011 111 001 , 110 010

И, наконец, запишем полученное двоичное число так, как это принято в математике, без незначащих нулей, а также отбросив правые нули в дробной части числа:

371,62 -> 11111001,11001

П2. Правило перевода “2с/с -> 8c/c”

При переводе многоразрядного двоичного числа в восьмеричную фор-му поступают следующим образом: Исходное число разбивают на триады. При этом для целой части числа разбиение проводят от местонахождения запятой влево, а для дробной части - от этого же места вправо. Затем самая левая группа при необходимости дополняется незначащими нулями до обра-зования триады, а самая правая группа только в дробной части дополняется нулями справа также до образования полной триады. После этого каждая триада заменяется соответствующей восьмеричной цифрой. Местоположение запятой сохраняется по тем же правилам, что и в правиле П1.

Пример.

Представить двоичное число 1101100,01111101 в форме восьмеричного.

Разобьем исходное число на группы по три цифры, приняв в качестве точки отсчета местоположение запятой (для наглядности между триадами поместим пробелы):

1 101 100 , 011 111 01

Теперь дополним до трех цифр нулями самую левую группу слева и самую правую группу справа:

001 101 100 , 011 111 010

И, наконец, заменим каждую триаду соответствующей восьмеричной цифрой:

001 101 100 , 011 111 100 --> 154,372

П3. Правило перевода “16с/с -> 2c/c”

При переводе многоразрядного шестнадцатиричного числа в двоич-ную форму каждую цифру исходного числа заменяют группой точно из четырех двоичных цифр (заменяют тетрадой

←предыдущая  следующая→
1 2 3 4 5 



Copyright © 2005—2007 «Mark5»