Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Программированиеи компьютеры /

Конструирование микросхем и микропроцессоров

←предыдущая следующая→  
1 2 3 4 



Скачать реферат


тонкопленочных элементов

О

сновными методами нанесения тонких пленок в технологии ГИМС являются: термическое испарение в вакууме, катодное, ионно-плазменное и магнетронное распыления.

Термическое испарение в вакууме 10-3 - 10 -4 Па предусматривает нагрев материала до температуры, при которой происходит испарение, направленное движение паров этого материала и его конденсация на поверхности подложки. Рабочая камера вакуумной установки (Рис. 5, а) состоит из металлического или стеклянного колпака 1, установленного на опорной плите 8. Резиновая прокладка 7 обеспечивает вакуум-плотное соединение. Внутри рабочей камеры расположены подложка 4 на подложкодержателе 3, нагреватель подложки 2 и испаритель вещества 6. Заслонка 5 позволяет в нужный момент позволяет прекращать попадание испаряемого вещества на подложку. Степень вакуума в рабочей камере измеряется специальным прибором - вакуумметром.

Рис. 5. Методы осаждения тонких пленок

а) - термическое испарение в вакууме; б) - катодное распыление;

в) - ионно-плазменное распыление;

1 - колпак; 2 - нагреватель подложки; 3 - подложкодержатель;

4 - подложка; 5 - заслонка; 6 - испаритель; 7 - прокладка;

8 - опорная плита; 9 - катод-мишень; 10 - анод; 11 - термокатод

Катодным (ионным) распылением (Рис. 5, б) называют процесс, при котором в диодной системе катод-мишень 9, выполненный из распыляемого материала, оседающие в виде тонкой пленки на подложке 4. Ионизация инертного газа осуществляется электронами, возникающими между катодом-мишенью 9 и анодом 10 при U= 3-5 кВ и давлении аргона 1-10 Па.

При ионно-плазменном распылении (Рис. 5, в) в систему анод 10 - катод-мишень 9 вводят вспомогательный источник электронов (термокатод 11). Перед началом работы рабочая камера 1 откачивается до вакуума 10-4 Па и на термокатод 11 подается ток, достаточный для разогрева его и создания термоэлектронного тока (термоэлектронная эмиссия). После разогрева термокатода 11 между ним и анодом 10 прикладывается U=200 В, а рабочая камера наполняется инертным газом (Ar) до давления 10-1 - 10-2 Па - возникает газовый плазменный разряд. Если подать отрицательный потенциал на катод-мишень 9 (3-5 кВ), то положительные ионы, возникающие вследствие ионизации инертного газа электронами, будут бомбардировать поверхность катода-мишени 9, распылять его, а частицы материала оседать на подложке 4, формируя тонкую пленку.

Определенная конфигурация элементов ИМС получается при использовании специальных масок, представляющих собой моно- или биметаллические пластины с прорезями, соответствующими топологии (форме и расположению) пленочных элементов.

Для формирования сложных ТПЭ большой точности применяют фотолитографию, при которой сплошные пленки материалов ТПЭ наносят на подложку, создают на ее поверхности защитную фоторезистивную маску и вытравливают незащищенные участки пленки. Существует несколько разновидностей этого метода. Например, рпи прямой фотолитографии вначале на диэлектрическую подложку наносят сплошную пленку резистивного материала и создают защитную фоторезистивную маску, черз которую травят резистивный слой. Затем эту маску удаляют и сверху наносят сплошную пленку металла (например, алюминия). После создания второй фоторезистивной маски и травления незащищенного алюминия на поверхности подложки остаются полученные ранее резисторы, а также сформированные проводники и контактные площадки, закрытые фоторезистивной маской.

Удалив ненужную более маску, на поверхность наносят сплошную защитную пленку (например, SiO2) и в третий раз создают фоторезистивную маску, открывая участки защитного покрытия над контактными площадками. Протравив защитное покрытие в этих местах и удалив фоторезистивную маску, получают плату ГИМС с пленочными элементами и открытыми контактными площадками.

Использованная литература

1. Методические указания к выполнению курсового проекта по курсу “Конструирование микросхем и микропроцессоров”, МИЭМ, 1988

2. Романычева Э.Т., Справочник: ”Разработка и оформление конструкторской документации РЭА”, Радио и связь, 1989

Оглавление

Задание на курсовое проектирование ............................................................ 2

Аннотация ........................................................................................................ 4

Введение ........................................................................................................... 5

Электрический расчет принципиальной схемы ............................................. 6

Данные для расчета размеров тонкопленочных элементов .......................... 7

Расчет геометрических размеров резисторов ................................................ 8

Расчет контактных переходов ....................................................................... 13

Расчет геометрических размеров конденсаторов ........................................ 15

Выбор и обоснование топологии ................................................................. 17

Граф - анализ схемы ...................................................................................... 18

Топология ....................................................................................................... 19

Обоснование выбора корпуса ....................................................................... 20

Последовательность технологического процесса ....................................... 20

Методы формирования тонкопленочных элементов .................................. 21

Использованная литература ......................................................................... 23

Оглавление ..................................................................................................... 24


←предыдущая следующая→  
1 2 3 4 



Copyright © 2005—2007 «Mark5»