Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Биология /

Белки: история исследования, химсостав, свойства, биологические функции

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 13 ... 



Скачать реферат


входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как ки-слоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:

Ациклические. Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Неко-торые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

1. Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным – это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обез-вреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

2. Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидро-ксильную группу. Серин входит в состав различных ферментов, основного белка молока – казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

3. Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной ( – SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

4. Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реак-цию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины, креатина.

Циклические. Эти аминокислоты имеют в своем составе ароматическое или гетеро-циклическое ядро и, как правило, не синтезируется в организме человека и должны по-ступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фе-нил-аланин служит основным источником синтеза тирозина – предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предше-ственником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

Глава 4. Структура.

При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.

4.1. Первичная структура

Представляет собой линейную цепь аминокислот, расположенных в определенной последовательности и соединенных между собой пептидными связями. Пептидная связь образуется за счет -карбоксильной группы одной аминокислоты и -аминной группы другой:

O - H2O O

H2N – CH – C + NH – CH – COOH H2N – CH – C  NH – CH – COOH

| OH H | | |

R R1 R R

Пептидная связь вследствие p, -сопряжения -связи карбонильной группы и р-орбитали атома N, на котором находится не поделенная пара электронов, не может рассматриваться как одинарная и вращение вокруг нее практически отсутствует. По этой же причине хиральный атом C  и карбонильный атом C k любого i-го аминокислотного остатка пептидной цепи и атомы N и С(i+1)-го остатка находятся в одной плоскости. В этой же плоскости находятся карбонильный атом О и амидный атом Н ( однако накоп-ленный при изучении структуры белков материал показывает, что это утверждение не со-всем строго: атомы, связанные с пептидным атомом азота, находятся не в одной плоскости с ним, а образуют трехгранную пирамиду с углами между связями, очень близкими к 120. Поэтому между плоскостями, образованными атомами Ci, Cik, Oi и Ni+1, Hi+1, Ci+1 , су-ществует некоторый угол, отличающийся от 0. Но, как правило, он не превышает 1 и не играет особой роли). Поэтому геометрически полипептидную цепочку можно рассматри-вать как образованную такими плоскими фрагментами, содержащими каждый по шесть атомов. Взаимное расположение этих фрагментов, как и всякое взаимное расположение двух плоскостей, должно определятся двумя углами. В качестве таковых принято брать торсионные углы, характеризующие вращения вокруг -связей N  C  и C   C k.

Геометрия любой молекулы определяется тремя группами геометрических характеристик ее хими-ческих связей – длинами связей, валентными углами и торсионными углами между связями, при-мыкающими к соседним атомам. Первые две группы в решающей мере определяются природой участ-вующих атомов и образующихся связей. Поэтому пространственная структура полимеров в основном определяется торсионными углами между звеньями полимерного остова молекул, т.е. конформацией полимерной цепи. Торсионный угол, т.е. угол поворота связи А-В вокруг связи В-С относительно связи С-D, определяется как угол между плоскостями, содержащими атомы А, В, С и атомы B, C, D.

В такой системе возможен случай, когда связи А-В и С-D расположены параллельно и находятся по одну сторону от связи В-С. Если рассматривать эту систему вдоль связи В-С, то связь А-В как бы заслоняет связь C-D, поэтому такая конформация называется заслоненной. Согласно рекомендациям международных союзов химии IUPAC (International Union of Pure and Applied Chemistry) и IUB (Interna-tional Union of Biochemistry), угол между плоскостями ABC и BCD считается положительным, если для приведения конформации в заслоненное состояние путем поворота на угол не выше 180 ближнюю к наблюдателю связь нужно поворачивать по часовой стрелке. Если эту связь для получения заслоненной конформации нужно поворачивать против часовой стрелки, то угол считается отрицательным. Можно заметить, что это определение не зависит от того, какая из связей находится ближе к наблюдателю.

При этом, как видно из рисунка, ориентация фрагмента, содержащего атомы Ci-1 и Ci [(i-1)-й фрагмент], и фрагмента, содержащего атомы Ci и Ci+1 (i-й фрагмент), опре-деляется торсионными углами, соответствующими вращению вокруг связи NiCi и связи CiCik. Эти углы принято обозначать как  и , в приведенном случае соответственно i и i. Их значениями для всех мономерных звеньев полипептидной цепи в основном опре-деляется геометрия этой цепи. Никаких однозначных величин ни для значения каждого из этих углов, ни для их комбинаций не существует, хотя на те и на другие накладываются ограничения, определяемые как свойствами самих пептидных фрагментов, так и природой боковых радикалов, т.е. природой аминокислотных остатков.

К настоящему времени установлены последовательности аминокислот для несколь-ких тысяч различных белков. Запись структуры белков в виде развернутых структурных формул громоздка и не наглядна. Поэтому используется сокращенная форма записи – трехбуквенная или однобуквенная (молекула вазопрессина):

Cys – Tyr – Phe – Gln – Asn – Cys – Pro – Arg – Gly – NH2 CYFQNCPRG – NH2

S S

При записи аминокислотной последовательности в полипептидных или олигопеп-тидных цепях с помощью сокращенной символики предполагается, если это особо не оговорено, что -аминогруппа находится слева, а -карбоксильная группа – справа. Со-ответствующие участки полипептидной цепи называют N-концом (аминным концом) и С-концом (карбоксильным концом), а аминокислотные остатки – соответственно N-концевым и С-концевым остатками.

4.2. Вторичная структура.

Фрагменты пространственной структуры биополимер, имеющие периодическое строение полимерного остова, рассматривают как элементы вторичной структуры.

Если на протяжении некоторого участка цепи однотипные углы, о которых говорилось на стр.15, приблизительно одинаковы, то структура полипептидной цепи приобретает пе-риодический характер. Существует два класса таких структур – спиральные и растянутые (плоские или складчатые).

Спиральной

←предыдущая следующая→
1 2 3 4 5 6 7 8 9 10 11 12 13 ... 



Copyright © 2005—2007 «Mark5»