Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

География /

Альтернативные источники электроэнергии

←предыдущая следующая→
1 2 3 4 5 6 



Скачать реферат


рабочих колес разме-щается внутри полой камеры из алюминия, обеспечивающей плавучесть турбины. Для повышения эффективности лопасти колес предполагается сделать достаточно гибкими. Вся система "Кориолис" общей длиной 60 км будет ориентирована по основному пото-ку; ширина ее при расположении турбин в 22 ряда по 11 турбин в каждом составит 30 км. Агрегаты предполагается отбуксировать к месту установки и заглубить на 30 м, чтобы не препятствовать судоходству.

После того как большая часть Южного Пассатного течения проникает в Кариб-ское море и Мексиканский залив, вода возвращается оттуда в Атлантику через Флорид-ский залив. Ширина течения становится минимальной – 80 км. При этом оно убыстряет свое движение до 2 м/с. Когда же Флоридское течение усиливается Антильским, расход воды достигает максимума. Развивается сила, вполне достаточная, чтобы привести в движение турбину с размашистыми лопастями, вал которой соединен с электрогенера-тором. Дальше – передача тока по подводному кабелю на берег.

Материал турбины- алюминий. Срок службы – 80 лет. Ее постоянное место – под водой. Подъем на поверхность воды только для профилактического ремонта. Ее работа практически не зависит от глубины погружения и температуры воды. Лопасти вращаются медленно, и небольшие рыбы могут свободно проплывать через турбину. А вот крупным вход закрыт предохранительной сеткой.

Американские инженеры, считают, что строительство такого сооружения даже дешевле, чем возведение тепловых электростанций. Здесь не нужно возводить здание, прокладывать дороги, устраивать склады. Да и эксплуатационные расходы существенно меньше.

Полезная мощность каждой турбины с учетом затрат на эксплуатацию и по-терь при передаче на берег составит 43 МВт, что позволит удовлетворить потребности штата Флориды (США) на 10%.

Первый опытный образец подобной турбины диаметром 1,5 м был испытан во Флоридском проливе. Разработан также проект турбины с рабочим колесом диамет-ром 12 м и мощностью 400 кВт.

Энергия ветра

Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, че-ловек задумывался над тем, нельзя ли использовать энергию ветра.

Ветряные мельницы с крыльями-парусами из ткани первыми начали сооружать древние персы свыше 1,5 тыс. лет назад. В дальнейшем ветряные мельницы совершен-ствовались. В Европе они не только мололи муку, но и откачивали воду, сбивали масло, как, например в Голландии. Первый электрогенератор был сконструирован в Дании в 1890 г. Через 20 лет в стране работали уже сотни подобных установок.

Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологиче-ской организации, составляют 170 трлн кВт•ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энер-гия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломают ветряки.

Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать большую площадь. К тому же ветроэлектростанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями, создавая помехи приему телепередач в близлежащих населенных пунктах.

Принцип работы ветроустановок очень прост: лопасти, которые вращаются за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектро-станции работают как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается электрический ток.

Для получения энергии ветра применяют раз¬ные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопа-стью (тогда у нее есть груз проти¬вовес); вертикальные роторы, напоминающие разре¬занную вдоль и насажанную на ось бочку; некое по¬добие «вставшего дыбом» вертолет-ного винта: на¬ружные концы его лопастей загнуты вверх и соеди¬нены между собой. Вертикальные конструкции хо¬роши тем, что улавливают ветер любого направле¬ния. Остальным приходится разворачиваться по ветру.

Чтобы как-то компенсировать изменчивость ветра, сооружают огромные «ветре-ные фермы». Ветродвигатели там стоят рядами на обширном пространстве и работают на единую сеть. На одном краю «фермы» может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком близко, чтобы они не загораживали друг друга. По-этому ферма занимает много места. Такие фермы есть в США, во Франции, в Англии, а в Дании «ветряную ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем на суше.

Чтобы снизить зависимость от непостоянного направления и силы ветра, в сис-тему включают маховики, частично сглаживающие порывы ветра, и разного рода акку-муляторы. Чаще всего они электрические. Но применяют также воздушные (ветряк на-гнетает воздух в баллоны; выходя оттуда, его ровная струя вращает турбину с электро-генератором) и гидравлические (силой ветра вода поднимается на определенную высо-ту, а, падая вниз, вращает турбину). Ставят также электролизные аккумуляторы. Ветряк дает электрический ток, разлагающий воду на кислород и водород. Их запасают в бал-лонах и по мере необходимости сжигают в топливном элементе (т.е. в химическом ре-акторе, где энергия горючего превращается в электричество) либо в газовой турбине, вновь получая ток, но уже без резких колебаний напряжения, связанного с капризами ветра.

Сейчас в мире работает более 30 тыс. ветроустановок различной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии. По мере того как ветряные электростанции окупаются, а их конструкции совершенствуются, цена воздушного электричества падает. Так, в 1993 г. во Франции себестоимость 1 кВт•ч электроэнергии, полученной на ветростан-ции, равнялась 40 сантимам, а к 2000 году она снизилась в 1,5 раза. Правда энергия АЭС обходится всего в 12 сантимов за 1 кВт•ч.

Геотермальные электростанции

Около 4% всех запасом воды на нашей планете сосредоточено под землей – в толщах горных пород. Воды, температура которых превышает 20º С, называют тер-мальными (от греч. «терме» - «тепло», «жар»). Нагреваются подземные озера и реки в результате радиоактивных процессов и химических реакций, протекающих в недрах Земли. В районах вулканической деятельности на глубине 500-1000 м встречаются бас-сейны с температурой 150-250 ºС; вода в них находится под большим давлением и, по-этому не кипит. В горных областях термальные воды нередко выходят на поверхность в виде горячих источников с температурой до 90 ºС.

Люди научились использовать глубинное тепло Земли в хозяйственных целях. В странах, где термальные воды подходят близко к поверхности, сооружают геотермаль-ные электростанции (геоТЭС). Они преобразуют тепловую энергию подземных источ-ников в электрическую. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г. на юге Камчатки, в долине реки Паужетка, в районе вулканов Кошелева и Ка-бального. В 1980 г. ее мощность составляла уже 11 МВт. В Италии, в районах Ланде-релло, Монте-Амиата и Травеле, работают 11 таких станций общей мощностью 384 МВт. ГеоТЭС действуют также в США (в Калифорнии, в Долине Больших Гейзеров), Исландии (у озера Миватн), Новой Зеландии (в районе Уайракеи), Мексике и Японии.

Геотермальные станции устроены относительно просто: здесь нет котельной, оборудования для подачи топлива, золоулавливателей и многих других приспособле-ний, необходимых для обычных тепловых электростанций. Постольку топливо у гео-ТЭС бесплатное, то и себестоимость вырабатываемой электроэнергии в несколько раз ниже.

Существует несколько схем полу¬чения электроэнергии на геотермальной элек-тростанции. Прямая схема: природ¬ный пар направляется по трубам в тур¬бины, соеди-ненные с электрогенерато¬рами. Непрямая схема: пар предвари¬тельно (до того как по-падает в турбины) очищают от газов, вызывающих разруше¬ние труб. Смешенная схема: неочищен¬ный пар поступает в турбины, а затем из воды, образовавшейся в результате кон¬денсации, удаляют не растворившееся в ней газы.

Именно по смешанной схеме работает Паужетская электростанция. Пароводяная смесь, содержащая тепло в количестве 840 кДж/кг, выводится через буровую скважину глубиной 350 м на поверхность и направляется в сепарационное устройство. Здесь пар при давлении 225 кПа ( свыше 2 атм) отделяется от воды и по трубам поступают в тур-бины; те вращаются и приводят в действие электрогенераторы.

Отработавший в турбинах пар попадает в смешивающий конденсатор, где охла-ждается и превращается в воду. Выделившиеся при этом газы (азот и кислород) удаля-ют насосом. Горячую воду (120 ºС) используют для теплоснабжения населенных пунк-тов. Вода для охлаждения пара подается самотеком по трубопроводу длиной 600 м из реки Паужетки.

В России, Болгарии, Венгрии, Грузии, Исландии, США, Японии и других стра-нах термальными водами обогревают здания, теплицы, парники, плавательные бассей-ны. А столица Исландии Рейкьявик получает тепло исключительно от горячих подзем-ных источников.

Солнечная энергия

Солнце изливает на Землю океан энергии. Человек буквально купается в этом океане, энергия везде. А человек, словно не замечая этого, вгрызается в землю за углем и нефтью, чтобы добыть энергию для заводов и фабрик, для освещения и отопления. И ведь

←предыдущая следующая→
1 2 3 4 5 6 



Copyright © 2005—2007 «Mark5»