Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

География /

Альтернативные источники электроэнергии

←предыдущая следующая→
1 2 3 4 5 6 



Скачать реферат


варианте процесс получения энергии остается очень долгим: солнечный свет через тепло и механическое движение превращается в электричество, потом снова в электромагнитные волны для передачи на Землю, а затем опять в электричество. Каждый этап ведет к потерям энергии; приемные антенны на Земле должны занимать огромные площади. Но хуже всего то, что СВЧ-луч негативно влияет на ионосферу Земли, пагубно сказывается на десятках живых орга-низмах. Поэтому пространство над антеннами необходимо закрыть для полетов авиа-ции. А как уберечь от гибели птиц?

Те же проблемы возникают и при передаче энергии по лазерному лучу, который к тому же сложнее преобразовать снова в электрический ток. Полученную в космосе энергии более целесообразно использовать в космосе же, не отправляя ее на Землю. На производство тратится около 90 % вырабатываемой на планете энергии. Основные ее потребители – металлургия, машиностроение, химическая промышленность. Они же, кстати, и главные загрязнители окружающей среды. Обойтись без таких производств человечество пока что не в состоянии. Но ведь можно убрать их с Земли. Почему бы ни использовать сырье, добываемое на Луне или астероидах, создав на спутниках и асте-роидах соответствующие базы? Задача, безусловно, сложнейшая, и сооружение солнеч-ных космических электростанций – только первый шаг к ее решению. С производством же электроэнергии для бытовых нужд справятся ветряки, бесплотинные ГЭС и другие экологически чистые энергоустановки.

Любой вариант проекта солнечной космической электростанции предполагает, что это колоссальное сооружение и причем не одно. Даже самая маленькая СКЭС должна весить десятки тысяч тонн. И эту гигантскую массу необходимо будет запус-тить на отдаленную от Земли орбиту. Современные средства выведения в состоянии доставить на низкую – опорную – орбиту необходимое количество блоков, узлов и па-нелей солнечных батарей. Чтобы уменьшить массу огромных зеркал, концентрирую-щих солнечный свет, можно сделать их из тончайшей зеркальной пленки, например, в виде надувных конструкций. Собранные фрагменты солнечной космической электри-ческой станции нужно доставить на высокую орбиту и состыковать там. А долететь к «месту работы» секция солнечной электростанции сумеет своим ходом, стоит только установить на ней электроракетные двигатели малой тяги.

Но Солнце не единственный космический источник энергии, которым могут воспользоваться земляне. Не исключено, что на других небесных телах есть энергоно-сители, по своей мощности во много раз превосходящие имеющиеся на нашей планете. В поверхностных слоях лунного грунта, например, найдены запасы гелия-3, который на Земле отсутствует. Предполагается, что получить термоядерную энергию из этого изо-топа проще, чем из других. Между тем считанные килограммы гелия-3 удовлетворят годовую потребность в энергии всего человечества.

Термоядерная энергия

Одним из перспективных источников получения электричества является освое-ние термоядерной энергии, т.е. энергии трития и дейтерия, содержащихся в неисчер-паемых количествах в воде океанов.

Во время химической реакции изменяются электронные оболочки атомов. В ре-зультате ядерной реакции иным становится строение атомного ядра – гораздо более прочного, чем атом. Поэтому при распаде тяжелых ядер (в реакции деления) или, на-оборот, при слиянии легких (в реакциях синтеза), когда образуются ядра элементов средней массы, выделяется огромное количество энергии.

Например, при делении одного атома урана – реакции, используемой для полу-чения энергии в современных атомных станциях, - выделяется около 1 МэВ энергии на каждый нуклон. (Нуклонами называют протоны и нейтроны, являющиеся составными частями ядер атомов.) В ходе реакции дейтерия D (тяжелого водорода, атом которого содержит в ядре нейтрон n) с протоном p синтезируется изотоп гелий-3, излучается γ-частица и выделяется примерно 5 МэВ энергии на один нуклон, т.е. в 5 раз больше:

1D2 + p → 2He3 + γ.

В природной воде один атом дейтерия приходится на 7 тыс. атомов водорода, но дейтерия, содержащегося в стакане воды достаточно, чтобы произвести столько же энергии, сколько можно получить при сгорании бочки бензина. В Мировом океане 4•1013 т дейтерия; его хватит всем жителям Земли на 4 тыс. лет.

Еще больше энергии выделяется в реакциях сверхтяжелого изотопа водорода – трития Т, в ядре которого два нейтрона:

1T3 + p → 2He4+ γ + 19,7 МэВ

1T3+1D2 → 2He4 + n + 17,6 МэВ

Трития в природе нет, но в достаточных количествах его можно получить в атомных реакторах, воздействуя потоком электронов на атомы лития:

N + 3Li7 → 2He4 + T

Однако осуществить эту реакцию весьма непросто: она начнется лишь в том случае, если ядра атомов сблизятся настолько, что возникнут силы ядерного притяже-ния (так называемого сильного взаимодействия). Это расстояние на пять порядков меньше размеров атома, и, пока электроны остаются на своих орбитах, они не позволят ядрам атомов сблизиться. Да и сами ядра до начала сильного взаимодействия расталки-ваются кулоновскими силами.

Заключение

Итак, спор о том, что опаснее, а что выгоднее в производстве электроэнергии пока что не завершен. Да и вряд ли буде окончательно завершен в ближайшее время. Человечество постоянно совершенствует способы получения так необходимой ему энергии, в том числе электрической. Но будет ли у этого и другого нового способа бу-дущее, и насколько они окажутся безопасными для человека и природы? Эти вопросы необходимо решать намного раньше, не дожидаясь аварий и катастроф, которые стано-вятся более опасными по мере проникновения человеческого разума в тайны природы.

Несмотря на внешнюю привлекательность «нетрадиционных» видов получения электроэнергии, иногда называемых «малой энергетикой», у них есть ряд недостатков. Само это второе название говорит, прежде всего, о том, что с их помощью пока, на со-временном уровне развития техники и экономики, невозможно получить так же много электроэнергии, как с помощью тепловой, гидро- или атомной энергетики. Но, воз-можно, этот недостаток преодолим в ближайшие десятилетия. А вот какие могут быть вредные последствия от развития такой нетрадиционной энергетики?

Например, существует в мире несколько электростанций, которые используют энергию приливов и отливов в океанах и морях. Казалось бы, что может быть лучше – практически безотходный способ получения энергии, почти вечный двигатель. Но, ока-зывается, если таких станций построить много, они могут существенно замедлить вра-щение Земли вокруг своей оси! Вред от такого вмешательства в природу может совер-шенно непредсказуемым и непоправимым. Солнечные электростанции так же, как и ветряные, и геотермальные пока могут быть построены далеко не везде.

А в Германии чрезмерное использование энергии ветра привело к ослаблению ветров, которые раньше выдували смог и вредные отходы, выделяемые в окружающую среду фабриками и заводами, с территории городов. Теперь экология этих населенных пунктов заметно ухудшилась.

А главный их недостаток на сегодня – это дороговизна, в большой потребности количества материалов и в очень обширной территории, которая тоже не везде может быть найдена. Строят солнечные станции на крышах домов и в космосе, на орбиталь-ных станциях. При этом используют самые современные солнечные батареи. Но, к со-жалению, заменить собой традиционные виды получения электроэнергии в нужном ко-личестве они пока не могут.

В наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонны нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Не мудрено, что нефть и газ будет стоить все дороже. Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники. Запасы урана, если сравнить их с запасами угля, вроде бы не столько уж и велики. Но зато на единицу веса он содержит в себе энергию в миллионы раз большую, чем уголь. А итог таков: при получении электроэнергии на АЭС нужно затратить в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее при-ходит на смену нефти и углю…

Всегда было так: следующий источник энергии был более мощным. То была «воинствующая» линия энергетики. Часто она шла рука об руку с военными приложе-ниями: атомная бомба, водородная. В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумы-вался о последствиях своих дел и поступков. Но времена изменились. Сейчас, в конце ХХ века, начинается новый, значительный этап земной энергетики. Появилась энерге-тика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы.

Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя самые но-вейшие идеи, изобретения, достижения науки. Это и понятно: энергетика связана бук-вально со всем, и все тянется к энергетике, зависит от нее. Поэтому энергохимия, водо-родная энергетика, космические электростанции, энергия, находящаяся в кварках, «черных дырах», вакууме, - это всего лишь наиболее яркие вехи, штрихи того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энерге-тики.

Список используемой литературы

«Энергия будущего» А.Н. Проценко, М., «Мол. Гвардия», 1980

«Ключ к Солнцу» Е.Б. Борисов, И.И. Пятнова, М., Мол. Гвардия, 1964

Энциклопедия для детей. Техника, М., «Аванта+», 1999

Энциклопедия для детей. География, М., «Аванта +», 1994

«Энергетика: проблемы и надежды», Л.С. Юдасин, М., «Просвещение»

←предыдущая следующая→
1 2 3 4 5 6 



Copyright © 2005—2007 «Mark5»