Атмосфера
  Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

География /

Атмосфера

←предыдущая следующая→
1 2 3 4 



Скачать реферат


В процессе фотосинтеза используется углекислый газ не только атмосферы, но и океана. При деструкции органического вещества большая часть углекислого газа, затраченного на его создание, возвращается обратно в атмосферу и гидросферу. Меньшая часть его захороняется в земной коре в виде каменного угля, нефти, горючих газов и рассеянного органического вещества. Возникаю- щий дисбаланс углекислого газа в атмосфере исправляется выносом его из недр Земли вулканами.

Значение углекислого газа атмосферы для географической обо- лочки не ограничивается его участием в создании органического вещества. Важные последствия имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаёт так на- зываемый парниковый эффект, выраженный в повышении температуры воздуха вблизи поверхности Земли.

В нижних 20 км. содержится водяной пар. В отличие от других газов содержание водяного пара во влажном воздухе не постоянно и зависит от температуры воздуха и характера подстилающей поверхности. Его содержание у земной поверхности колеблется в среднем от 0,2% в полярных широтах до 2,5% в экваториальных.

При оценке водяного пара следует иметь в виду, что он:

1) поддерживает парниковый эффект, так как задерживает длинно- волновое тепловое излучение земной поверхности;

2) представляет основное звено больших и малых круговоротов влаги;

3) влияет на климат, повышая температуру воздуха при конденсации водяных паров.

Соотношение газов в сухом воздухе в тропосфере почти не изменяется с высотой. Что касается водяного пара, то его процентное содержание с высотой уменьшается.

На высоте 20 – 30 км. («озоновая завеса») расположен слой озона (О3). Озон образуется под действием ультрафиолетовых лучей Солнца, и хотя общее количество его незначительно, играет важную роль в атмосфере. Озон обладает способностью поглощать ультрафиолетовую радиацию Солнца и тем самым предохраняет животный и растительный мир от её губительного действия.

В воздухе тропосферы всегда присутствует примесь аэрозолей – мельчайших жидких и твёрдых частиц, находящихся во взвешенном состоянии. Это:

- пыль земного и космического прохождения, микрометеориты,

метеориты и продукты их сгорания – Al, Fe, Ni (14 * 106 т/год);

- твёрдые частицы дыма и пепла от лесных пожаров, сжигания топлива, извержения вулканов – C, S;

- частицы почвы и продукты выветривания горных пород – Si, Al;

- морская соль – NaCl, KCl, CaCl2, MgCl2;

- частицы органического происхождения – бактерии, микро- организмы (770 – 2200 Мт/год);

- выбросы цементного производства – Са;

- выбросы химических, металлургических производств – S, Pb, фенолы, хлорфторметаны, фреоны, CF2Cl2, CCl4.

В среднем над каждым квадратным сантиметром в воздухе «висит» 108 – 109 аэрозольных частиц. Особенно много их в городах и крупных промышленных центрах, где к аэрозолям добавляются выбросы в атмосферу вредных газов, их примесей, образующихся при сжигании топлива. Общее их содержание 250 – 450 Мт/год или 1,5 – 2,0 кг/м2 год.

Та или иная концентрация аэрозолей в атмосфере определяет её прозрачность, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли – ядра конденсации – способствуют превращению водяного пара в водяные капли.

3. Строение атмосферы.

Атмосфера простирается вверх на много сотен километров. Верхняя её граница, на высоте около 2000 – 3000 км, в известной мере условна, так как газы, её составляющие, постепенно разре- жаясь, переходят в мировое пространство. С высотой меняются химический состав атмосферы, давление, плотность, температура и другие её физические свойства. Химический состав воздуха до высоты 100 км. существенно не меняется. Несколько выше атмосфера также состоит главным образом из азота и кислорода. Но на высотах 100 – 110 км., под действием ультрафиолетовой радиации солнца, молекулы кислорода расщепляются на атомы и появляется атомарный кислород. Выше 110 – 120 км. кислород почти весь становится атомарным. Предполагается, что выше 400 – 500 км. газы, составляющие атмосферу, также находится в атомар- ном состоянии.

Давление и плотность воздуха с высотой быстро уменьшаются. Хотя атмосфера простирается вверх на сотни километров, основная масса её размещается в довольно тонком слое, прилегающем к поверхности земли в самых нижних её частях. Так, в слое между уровнем моря и высотами 5 – 6 км. сосредоточена половина массы атмосферы, в слое 0 – 16 км. – 90%, а в слое 0 – 30 км. – 99%. Такое же быстрое уменьшение массы воздуха происходит выше 30 км. Если вес 1 м3 воздуха у поверхности земли равен 1033 г., то на высоте 20 км. он равен 43 г., а на высоте 40 км. лишь 4 г.

На высоте 300 – 400 км. и выше воздух настолько разрежён, что в течение суток плотность его изменяется во много раз. Иссле-дования показали, что это изменение плотности связано с положе- нием Солнца. Наибольшая плотность воздуха около полудня, наименьшая – ночью. Объясняется это отчасти тем, что верхние слои атмосферы реагируют на изменение электромагнитного излу- чения Солнца.

Изменение температуры воздуха с высотой происходит также неодинаково. По характеру изменения температуры с высотой атмосфера делится на несколько сфер, между которыми располагаются переходные слои, так называемые паузы, где температура с высотой мало изменяется.

В таблице приведены наименования и главные характеристики сфер и переходных слоёв:

Сфера Высота нижней и верхней

границы, км. Характер изменения

температуры с высотой Переходный слой

Тропосфера

Стратосфера

Мезосфера

Термосфера

Экзосфера От поверхности земли до 8 – 17

От 8 – 17 до 50 – 55

От 50 – 55 до 80

От 80 до 800

Выше 800 Понижение

Повышение

Понижение

Повышение

– Тропопауза

Стратопауза

Мезопауза

Термопауза

3.1.Тропосфера. Физические свойства тропосферы в значительной степени определяются влиянием земной поверхности, которая является её нижней границей. Наибольшая высота тропосферы на- блюдается в экваториальной и тропической зонах. Здесь она достигает 16 – 18 км. и сравнительно мало подвергается суточным и сезонным изменениям. Над приполюсными и смежными областями верхняя граница тропосферы лежит в среднем на уровне 8 – 10 км. В средних широтах она колеблется от 6 – 8 до 14 – 16 км.

В тропосфере сосредоточено более 4/5 массы земной атмосферы и почти весь содержащийся в ней водяной пар. Кроме того, от поверхности земли до верхней границы тропосферы температура понижается в среднем на 0,65° на каждые 100 м. Это объясняется тем, что воздух в тропосфере нагревается и охлаждается преимущественно от поверхности земли.

В соответствии с притоком солнечной энергии температура по- нижается от экватора к полюсам. Так, средняя температура воздуха у поверхности земли на экваторе достигает +26о, над полярными областями зимой -34°, -36°, а летом около 0°С. Таким образом, разность температур экватор – полюс зимой составляет 60°, а летом лишь 26°.

Энергию атмосферной циркуляции можно определить контра- стами температуры экватор – полюс. Так как зимой величина контрастов температуры больше, то атмосферные процессы протекают более интенсивно, чем летом. Этим же объясняется тот факт, что преобладающие западные ветры зимой в тропосфере имеют большие скорости, чем летом. При этом скорость ветра, как правило, с высотой возрастает, доходя до максимума равному около 100 м/сек. на высоте 60 – 65 км. Горизонтальный перенос сопровождается вертикальными перемещениями воздуха и турбулентным движением. Вследствие подъёма и опускания больших объёмов воздуха образуются и рассеиваются облака, возникают и прекращаются осадки. Переходным слоем между тропосферой и вышележащей сферой является тропопауза. Выше неё лежит стратосфера.

3.2. Стратосфера простирается от высот 8 – 17 до 50 – 55 км. Она была открыта в начале нашего века. По физическим свойствам стратосфера резко отличается от тропосферы уже тем, что темпера- тура воздуха здесь, как правило, повышается в среднем на 1°–2° на километр поднятия и на верхней границе, на высоте 50 – 55 км, становится даже положительной: +10о. Повышение температуры в этой сфере вызвано наличием здесь озона (О3), который образуется под влиянием ультрафиолетовой радиации Солнца. Слой озона занимает почти всю стратосферу. Этот слой, границы которого приблизительно соответствуют границам стратосферы, называют озоносферой. Это слой 10 – 60 км, содержащий озон с максимумом на высоте 22- 25 км.

Количество озона неодинаково над различными частями Земли. Озона больше в высоких широтах, меньше в средних и низких широтах и изменяется это количество в зависимости от смены сезонов года. Весной озона больше, осенью меньше. Кроме того, происходят непериодические его колебания в зависимости от горизонтальной и вертикальной циркуляции атмосферы. Многие атмосферные процессы тесно связаны с содержанием озона, так как он оказывает непосредственное влияние на поле температуры.

Зимой, в условиях полярной ночи, в высоких широтах в слое озона происходит излучение и охлаждение воздуха. В результате в стратосфере высоких широт (в Арктике и Антарктике) зимой формируется область холода, стратосферный циклонический вихрь с большими горизонтальными градиентами температуры и

←предыдущая следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»