< Арсенид индия. Свойства, применение. Особенности получения эпитаксиальных пленок
  Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Технология /

Арсенид индия. Свойства, применение. Особенности получения эпитаксиальных пленок

←предыдущая следующая→
1 2 3 4 



Скачать реферат


В индии предназначенном для синтеза полупроводниковых соединений, лимитирующими являются следующие примеси: алюминий, медь, магний, кремний, серебро, кальций, серебро и сера.

Применяемые методы очистки индия можно разделить на химические и физические. Методы первой группы - субхлоридный, экстракционный, электролитический и перекристаллизация солей из растворов. Химические методы требуют наличия сверхчистых вспомогательных материалов кислот, щелочей, органических растворителей. Методы второй группы (физические) - термообработка, ректификация, вытягивание из расплава и зонная плавка - включают воздействие на индий каких-либо вспомогательных химических реактивов.

При применении для приготовлении электролита особо чистого натрия электролитическое рафинирование индия позволяет получить индий чистотой 99,9999% (выход по току 90%).

Субхлоридный метод получения индия высокой чистоты позволяет получать индий чистотой 99,9999%.

Для успешного осуществления метода вакуумной термообработки необходимо выполнения следующих условий:

• материал контейнера должен быть достаточно чистым и не взаимодействовать с расплавленном индием;

• термообработка должна проводится в условиях высокого вакуума (10-6 мм рт.ст.) и в остаточной атмосфере, не содержащей углеводородов.

Термообработка индия проводится в интервале температур 500-900ОС. Верхний предел температурного интервала ограничивается взаимодействием расплавленного индия с кварцем и значительным увеличение упругости пара индия.

Вакуумная термообработка позволяет получить индий чистотой 99,9999%.

Зонная плавка электрически рафинированного индия позволяет осуществлять дальнейшую очистку его от примесей.

При вытягивании кристаллов индия по методу Чохральского эффективная очистка происходит при выращивании кристаллов с большими скоростями вращения затравки (60-100 об/мин) и скоростью роста 2см/ч. Чистота индия выращенного по методу Чохральского, выше 99,9999%. Применение только одного способа очистки индия может оказаться недостаточным, и возможно потребуется сочетание различных способов (физических и химических).

Методы получения мышьяка и его соединений высокой степени чистоты.

Общее содержание примесей в мышьяке используемом для синтеза арсенида индия, не должно превышать 110-5%, суммарное содержание селена и теллура должно быть < 110-6% каждого в отдельности.

Наиболее перспективными технологиями очистки мышьяка являются хлоридная и гидридная с получением промежуточных высоко чистых продуктов треххлористого мышьяка или гидрида мышьяка. Хлоридная схема получения чистого мышьяка включает:

• хлорирование металлического мышьяка хлором или взаимодействие трехокиси мышьяка с соляной кислотой;

• очистку трихлорида мышьяка ректификацией;

• восстановление очищенного трихлорида мышьяка водородом до компактного металлического мышьяка.

Перед ректификацией треххлорида мышьяка проводят сорбционную очистку.

Для получения особо чистых гидрида мышьяка и элементарного мышьяка используется гидридная схема. Гидридная технология мышьяка имеет ряд преимуществ:

• содержание мышьяка в гидриде выше, чем в любом другом соединении;

• разложение гидрида мышьяка происходит при невысоких температурах и отсутствует необходимость в восстановлении;

• гидриды имеют малую реакционную способность по отношению к конструкционным материалам при температурах синтеза и очистки.

Недостатками гидрида мышьяка являются высокая токсичность и взрывоопасность.

Гидридная технология очистки мышьяка состоит из следующих этапов:

• синтез арсенида металла II группы;

• гидролиз арсенида с получением арсина;

• очистка арсина сорбцией;

• вымораживание и ректификация;

• разложение арсина до металлического мышьяка.

Мышьяк, полученный по приведенным схемам, с успехом используется для синтеза арсенида индия. Кроме того, треххлористый мышьяк находит широкое применение для нарашивания эпитаксиальных слоев арсенида индия.

Эпитаксиальное наращивание арсенида индия из газовой фазы.

Газотранспортные процессы, в основе которых лежат обратимые химические реакции, широко применяются для получения эпитаксиальных структур полупроводниковых соединений А3В5. Основными достоинствами процесса получения эпитаксиальных слоев арсенида индия из газовой фазы в проточной системе являются:

• простота конструктивного оформления процесса;

• низкое пересыщение вещества над растущим кристаллом;

• сравнительно невысокие температуры кристаллизации, возможность предотвращения загрязнения материалом контейнера;

• возможность управления процессом роста изменением скорости потока и концентрации транспортирующего агента;

• широкие возможности легирования слоев различными примесями;

• возможность автоматизации процесса;

• осуществление непрерывного процесса;

• возможность получение многослойных структур и заданной морфологии.

Суммарные реакции, наиболее часто используемых для осаждения эпитаксиальных слоев арсенида индия и переноса компонентов, в общем виде мощно представить следующим образом:

4InГ3+As4+6H24InAs+12HГ; (8)

3As+2InГ3+3/2H23AsГ+2In+3HГ, (9)

3AsГ+2In2InAs+AsГ3; (10)

In+AsInAs; (11)

2InAs+3Г2InГ3+As2; (12)

2InAs+H2OIn2O+As2+H2; (13)

где Г - галоген. Арсенид индия в виде эпитаксиальных слоев получают методами транспортных реакций либо синтезом из элементов, либо пересублимацией соединения. Для переноса чаще всего используют галоиды (трихлориды элементов III и V групп, хлористый водород) и воду. Галоидные системы (хлоридные, йодидные) имеют преимущества перед системой H2O-H, поскольку хлор и йод являются нейтральными примесями для арсенида индия.

Система In-AsCl3-H2 .

Достоинствами системы можно считать:

• малое число исходных компонентов в системе;

• устранение предварительного получения InAs, используемого в качестве источника;

• возможность глубокой очистки AsCl3 ректификацией;

получение хлористого водорода и мышьяка высокой степени чистоты восстановлением AsCl3 водородом.

Схема установки для выращивания эпитаксиальных слоев арсенида индия с использованием системы In-AsCl3-H2 представлена на рис.2.

Рис. 2. Схема установки для получения эпитаксиальных пленок InAs в системе In-AsCl3-H2:

1- зона мышьяка; 2-лодочка с индием; 3-держатель с подложкой; 4-выход водорода с продуктами реакций; 5-вход чистого водорода; 6-барботер с AsCl3.

Реактор имеет три зоны нагрева, причем печь сконструирована таким образом, что источник индия можно наблюдать во время процесса.

Водород барботирует через испаритель с хлористым мышьяком при температуре 20ОС, и смесь AsCl3+H2 поступает в печь.

В зоне 1 печи протекает реакция :

2AsCl3+3H2  6HCl+1/2As4. (14)

В зане 2 пары мышьяка взаимодействуют с индием. Смесь газов поступает в зону источника индия и проходят реакции:

2In+2HCl  InCl+H2; (15)

In+As4  4InAs. (16)

Взаимодействие источника индия с газовой смесью происходит до насыщения индия мышьяком. Когда индий полностью насыщается мышьяком, на поверхности расплава образуется пленка арсенида индия, при этом избыточный мышьяк поступает в реактор и конденсируется на холодных стенках реактора вне печи. В течении периода насыщения индия мышьяком подложка находится вне реактора. Продолжительность насыщения определяется количеством индия, его температурой и скоростью поступления пара мышьяка к поверхности индия. При использовании не полностью насыщенного источника индия состав газовой фазы в зоне осаждения непостоянен.

При выращивании арсенида индия n-типа в системе In-AsCl3-H2 в газовый поток вводится смесь H2S+H2 . Концентрацией H2S определяется уровень легирования. Для получения пленок р-типа используется элементарный цинк и кадмий, вводимые в виде легирующей добавки из испарителя с отдельной зоной нагрева.

Система In-HCl-AsH3-H2.

Принципиальными технологическими преимуществами гидридов являются следующие:

• летучие ковалентные гидриды можно получать из всех наиболее важных в полупроводниковой технике элементов;

• свойства гидридов позволяют успешно применять очистку, основанную на трех фазовых переходах (жидкость- пар, твердое- пар, твердое- жидкость), а также эффективные методы газовой очистки (сорбции, ионного обмена);

• содержание основного элемента в гидриде выше, чем в любом другом соединении;

• гидриды имеют малую реакционную способность по отношению к конструкционным материалам.

Недостатками гидридов являются их высокая токсичность и взрывоопасность.

При выращивании эпитаксиальных слоев этой системы мышьяк при комнатной температуре находится в газообразном состоянии, что обеспечивает постоянство состава газовой фазы и гибкость процесса легирования.

Типичная схема установки для наращивания эпитаксиальных слоев арсенида индия с помощью системы In-HCl-AsH3-H2 приведена на рис. 3.

p

←предыдущая следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»