Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Технология /

Оптические датчики газового состава

←предыдущая  следующая→
1 2 



Скачать реферат


Московский ордена Ленина, ордена Октябрьской Революции

и ордена Трудового Красного Знамени

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имени Н.Э.Баумана.

_________________________________________________________

Факультет РЛ

Кафедра РЛ2

Реферат по дисциплине

"Лазерные оптико-электронные прибо-ры"

студента

Майорова Павла

Леонидовича, группа РЛ3-101.

Руководитель

Немтинов Владимир Борисович

Тема реферата:

"Оптическая обработка информации"

Вступление

В данном реферате обсуждаются датчики газового состава, то есть речь идет об обработке информации о составе газовой смеси. Важность анализа газового состава сегодня не вызывает сомнений, поскольку она напрямую связана с основными пробле-мами современной цивилизации: экономией энергии, сырья, контролем качества, опти-мизацией промышленных процессов, охраной окружающей среды, совершенствовани-ем медико-биологических методов и т.д.

Датчики газового состава

Датчики, предназначенные для определения химического состава газовой сме-си, получили широкое распространение, связанное прежде всего с контролем за про-цессами горения в целях экономии энергии и сокращения загрязнения атмосферы. Многие из новых датчиков газового состава предназначены для анализа газового соста-ва горючих смесей или продуктов сгорания; O2, СО, СО2, Н2О, SO2, SO3, NOx, CHx, и т. д.

Характеристики датчиков газового состава также претерпевают заметную эво-люцию: появляются новые датчики с более высокой селективностью, происходит их миниатюризация, приспособление к измерению непосредственно в рабочем объеме; некоторые из них способны заменить сложные и громоздкие анализаторы.

Кислород в качестве объекта газового анализа занимает особое место: возмож-ности точного и быстрого анализа этого газа, предоставляемые сегодня некоторыми датчиками и, прежде всего, датчиками на основе твердых электролитов, находят мно-гочисленные применения в таких весьма различных областях человеческой деятельно-сти, как химическая промышленность, металлургия, сельское хозяйство, пищевая про-мышленность, медицина, биология, системы кондиционирования и контроля атмосфе-ры в лаборатории. Применение таких датчиков все расширяется, стимулируя разработ-ку новых специальных зондов для таких газов, как Cl2, SO2, HCl, H2S, H2 и т. п.

Граница между "датчиками" и "анализаторами" в случае анализа газа является расплывчатой. При ее определении используются три критерия:

• возможность оперативного использования в непрерывном или квазинепрерывном режиме для контроля газовой среды либо определения ее физических параметров (температуры, давления, скорости циркуляции, содержания пыли и т.п.);

• отсутствие необходимости в использовании химических реагентов;

• невмешательство оператора в каждое измерение (для отбора проб, поверки и т. д.).

Это определение датчиков специально дается нестрого. Анализаторы, которые не рассматриваются как датчики газового состава, — это масс-спектрометры, анализа-торы на основе хемолюминесценции (ионизация газа под действием высокоэнергетиче-ского ультрафиолетового излучения) и приборы ядерного магнитного резонанса (ЯМР).

Возможна следующая классификация датчиков газового состава

• электрохимические датчики на основе твердых электролитов;

• электрические датчики;

• катарометры;

• парамагнитные датчики;

• оптические датчики.

Далее, следуя теме реферата, будет рассмотрен только один тип датчиков.

Оптические датчики

Физические принципы

Поглощение электромагнитного излучения молекулой газа может привести не только к возбуждению электрона, но также к изменениям колебательной энергии (ко-лебания атомов относительно каждой химической связи) и вращательной энергии (вращение всей молекулы или ее части). Все эти изменения энергии являются кванто-ванными. Возможны только определенные значения кинетического момента вращения или энергии колебаний, характеризующие так называемые колебательные и враща-тельные энергетические уровни.

Поглощение видимого, ультрафиолетового и рентгеновского излучений вызыва-ет изменение электронной энергии молекул. Поглощение инфракрасного излучения приводит к изменениям колебательных и вращательных состояний молекул.

Эти эффекты используются в абсорбционной спектроскопии, которая является, следовательно, методом определения химического состава газа, поскольку получаемые спектры поглощения однозначно характеризуют его. Измерение интенсивности элек-тромагнитного излучения, поглощаемого газовой смесью, зависит от природы газа и позволяет, таким образом, определить концентрацию данного газа в смеси. Согласно закону Бугера — Ламберта — Бера, доля (I/I0) интенсивности излучения, поглощенного кюветой с газом, изменяется экспоненциально с длиной кюветы l, концентрацией c газа и коэффициентом поглощения а:

lg(I/I0)=alc.

Применимость закона Бугера — Ламберта — Бера. Некорректное примене-ние этого закона может привести к существенным ошибкам. Закон справедлив только в том случае, если излучение является монохроматическим, что не выполняется в случае бездисперсионных приборов. Кроме того, коэффициент удельного поглощения а изме-няется с используемой шириной полосы, а изменение температуры анализируемого газа приводит к смещению полосы поглощения. Закон также не учитывает общего давления и влияния непоглощающих газов, присутствующих в смеси.

Для того чтобы устранить или учесть эти источники ошибок, наряду с другими неконтролируемыми факторами, такими, как изменение интенсивности излучения, из-менение чувствительности детектора или загрязнение окон датчика, обычно использу-ются приборы, работающие по двухлучевой схеме.

Модели

Газы, анализ которых в промышленности осуществляется с использованием ме-тодов абсорбционной спектроскопии, перечислены в табл. 1.

Таблица 1. Основные газы, анализируемые с помощью оптических излучений

Длина волны, нм

Рентгенов¬ское излуче-ние

10-2  10 УФ

10  5102 Видимое

5102  8102 ИК

8102  106

Основные анализируемые газы H2S, газооб-разные ки-слоты O2, O3, SO2, NH3, Hg Cl2, ClO2, NOx, H2O H2O, CO, CO2, NO, N2O, NH3, SO2, SO3, алканы, ал-кены

Область Следовые количества — NH3, SO2, O3, Hg + +

концентра¬ций Высокие концентра¬ции + O3, SO2 + +

Анализаторы с использованием видимого и ультрафиолетового излучения. Пучок света, испускаемый лампой (обычно ртутной), монохроматизируется с помощью соответствующих фильтров.

В некоторых приборах монохроматическое излучение разделено на два пучка, направленные соответственно на кювету, через которую продувается смесь анализи-руемых газов, и на другую кювету, содержащую газ сравнения (двухлучевой спектро-метр). Интенсивности излучения на выходе детектируются и сравниваются с помощью фотоэлементов.

В приборе другого типа (однолучевом спектрометре) пучок света направляется на кювету, через которую продувается смесь. После этой кюветы пучок света разделя-ется на два пучка, проходящие через два фильтра, один из которых дает излучение, по-глощаемое анализируемым газом, а другой — не поглощаемое. Сопоставление интен-сивностей этих потоков света осуществляется с помощью фотоэлементов.

Рис. 1. Принципиальная схема инфракрасного бездисперсионного двухлучевого спектрометра с положительным фильтром.

Анализаторы, использующие ИК-излучение. Дисперсионные или "монохроматизирующие" приборы используются для контроля процессов в промышленности очень редко; обычно используют недисперсионные приборы, т, е. приборы без спектрального разложения. Хотя селективность этих приборов ниже, однако при промышленном использовании они имеют ряд преимуществ, таких, как лучшая чувствительность, простота, надежность и меньшие эксплуатационные рас-ходы.

В варианте однолучевого прибора излучение от источника проходит через кюве-ту с анализируемым газом, а затем — последовательно через два обращающих фильтра, что позволяет сопоставить с помощью детектора поглощение для двух длин волн — одной, соответствующей пику поглощения для анализируемого газа, и другой — отве-чающей минимальному поглощению (последняя принята в качестве стандарта).

Рис. 2. Принципиальная схема инфракрасного бездисперсионного двухлучевого спектрометра с отрицательным фильтром.

Анализаторы на основе двухлучевой схемы более распространены. Различают приборы двух основных типов (рис. 1 и рис. 2):

• анализаторы с положительным фильтром;

• анализаторы с отрицательным фильтром.

Анализаторы с положительным фильтром (рис. 1) снабжены рабочей кюветой А, через которую пропускается анализируемая газовая смесь (газ H, поглощающий в инфракрасной области спектра, и газ G, не поглощающий в этой области), и кюветой сравнения R, содержащей непоглощающий газ G. Кюветы изготавливаются из меди или из позолоченного либо посеребренного изнутри стекла. Они закрыты окнами, прозрачными для излучения (LiF, кварц, слюда, CaF2 и др.). В состав детектора D, работающего по дифференциальной схеме, входят две камеры, P и Q, заполненные газом Н и разделенные мембраной М. Газ Н, содержащийся в камере Р, поглощает

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»