Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Технология /

Порошковая металлургия

←предыдущая следующая→
1 2 3 4 5 6 



Скачать реферат


прохождении электрического тока водный раствор или расплав соли металла, выполняя роль электролита, резлагается, металл осаждается на катоде, где его ионы разряжаютсяМе+ne=Me Сам процесс электрохимического превращения происходит на границе электрод (анод или катод) - раствор. Источником ионов выделяемого металла служат как правило, анод, состоящий из этого металла, и электролит, содержащий его растворимое соединение. Такие металлы как никель, кобальт, цинк выделяются из любых растворимых в виде однородных плотных зернистых осадков. Серебро и кадмий осаждаются из простых растворов в форме разветвленных кристаллитов, а из растворов цианистых солей - в виде плотных осадков. Размеры частиц осаждаемого порошка зависят от плотности тока, наличия коллоидов и поверхностно активных веществ. Очень большое влияние на характер осадков оказывает чистота электролита, материал электрода и характер его обработки.

Производительность злектролиза оценивается на осно-

вании закона Фарадея по электрохимическому эквиваленту

q=cJT

где q - количество выделившегося на электроде порошка,Г., J - сила тока, А., Т - время, Ч., С - электрохимичесиий эквивалент.Количество выделившегося на электроде порошка всегда меньше теоретического из-за протекания точных процессов.

Карбонильный процесс

Карбонилы - это соединения металлов с окисью углерода Me(CO)C, обладающие невысокой температурой образования и разложения. Процесс получения порошков по этому методу состоит из двух главных этапов:

• получение карбонила из исходного соединения

MeаXb+cCO=bX+Mea(CO)c,

• образование металлического порошка

Меа(СО)с= аМе+сСО

Основным требованием к таким соединениям является их легко-летучесть и небольшие температуры образования и термического разложения (кипения или возгонки). На первой операции - синтеза карбонила - отделение карбонила от ненужного вещества Х достигается благодаря летучести карбонила. На втором этапе происходит диссоциация (разложение) карбонила пут м его нагрева. При этом возникающий газ СО может быть использован для образования новых порций карбонилов. Для синтеза карбонилов используют металлсодержащее сырье : стружку, обрезки, металлическую губку и т.п. Карбонильные Порошки содержат примеси углерода, азота, кислорода (1...3%). Очистку порошка производят путем нагрева в сухом водороде или в вакууме до температуры 400...600 С, Этим методом получают порошки железа, никеля, кобальта, хрома, молибдена, вольфрама.

Свойства порошков. Свойство металлических порошков характе-ризуются химическими, физическими и технологическими свойствами. Химические свойства металлического порошка зависят от химического состава,который зависит от метода получения порошка и химического состава исходных материалов. Содержание основного металла в порошках составляет 98...99%. При изготовлении изделий с особыми свойствами, например магнитными, применяют более чистые порошки. Допустимое количестве примесей в порошке определяется допустимым их количеством в готовой продукции. Исключение сделано для окислов железа, меди, никеля, вольфрама и некоторых других,которые при нагреве в присутствии восстановления легко образуют активные атомы металла, улучшающие спекаемость порошков. Содержание таких окислов в порошке может составлять 1...10%. В металлических порошках содержится значительное количество газов (кислород, водород, азот и др.), как адсорбированных на поверхности, так и попавших внутрь частиц в процессе изготовления или при последующей обработке, Газовые пленки на поверхности частиц порошка образуются самопроизвольно из-за ненасыщенности полей силовых в поверхностных слоях. С уменьшением частиц порошка увеличивается адсорбция газов этими частицами.

При восстановлении химических соединений часть газов - восстановителей и газообразных продуктов реакции не успевает выйти наружу и находится либо в растворенном состоянии,либо в виде пузырей. Электролитические порошки содержат водород, вы-деляющийся на катоде одновременно с осаждением на нем металла. В карбонильных порошках присутствуют растворенные кислород, окись и двуокись углерода, а в распыленных порошках - газы, механически захваченные внутрь частиц.

Большое количество газов увеличивает хрупкость порошков и затрудняет прессование. Интенсивное выделение газов из спрессованной заготовки при спекании может привести к растрескиванию изделий. Поэтому перед прессованием или в его процессе применяют вакуумирование порошка, обеспечивающее удаление зна-чительного количества газов.

При работе с порошками учитывают их токсичность и пирофорность. Практически все порошки оказывают вредное воздействие на организм человека однако и компактном виде (в виде мелких частичек порошка) большинство металлов безвредно. Пирофорность, т.е. способность к самовозгоранию при соприкосновении с воздухом, может привести к воспламенению порошка и даже взрыву. Поэтому при работе с порошками строго соблюдают специальные меры безопасности. Физические свойства частиц характеризуют; форма, размеры и гранулометрический состав,удельная поверхность, плотность и микротвердость.

Форма частиц.В зависимости от метода изготовления порошка

получают соответствующую форму частиц: сферическая - при кар-

бонильном способе в распылении, губчатая - при восстановлении,

осколочная - при измельчении в шаровых мельницах, тарельчатая

• при вихревом измельчении, дендритная - при электролизе,каплевидная - при распылении. Эта форма частиц может несколько изменяться при последующей обработке порошка (размол, отжиг, грануляция). Контроль формы частиц выполняют на микроскопе. Форма частиц значительно влияет на плотность, прочность и однородность свойств прессованного изделия. Размер частиц и гранулометрический состав. Значительная часть порошков представляет собой смесь частиц порошка размером от долей микрометра до десятых долей миллиметра.Самый широкий диапазон размеров частиц у порошков полученных восстановлением и электролизом. Количественное соотношение объемов частиц различных размеров к общему объему порошка называют гранулометрическим составом.

Удельная поверхность - это сумма наружных поверхностей всех частиц,имеющихся в единице объема или массы порошка. Для металлических порошков характерна величина удельной поверхности от 0.01 до 1 м2/г (у отдельных порошков - 4 м2/г у вольфра-ма, 20 м2/г у карбонильного никеля) . Удельная поверхность по-рошка зависит от метода получения его и значительно влияет не прессование и спекание.

Плотность. Действительная плотность порошковой частицы, носящая название пикнометрической, в значительной мере зависит от наличия примесей закрытых пор, дефектов кристаллической решетки и других причин и отличается от теоретической.Плотность определяют в приборе - пикнометре, представляющем собой колбочку определенного обьема и заполняемую сначала на 2/3 объема порошком и после взвешивания дозаполняют жидкостью, смачивающей порошок и химически инертной к нему. Затем снова взвешивают порошок с жидкостью. И по результатам взвешиваний находят массу порошка в жидкости и занимаемый им объем. Деление массы на объем позволяет вычислить пикнометрическую плотность порошка.Наибольшее отклонение плотности порошковых частиц от теоретической плотности наблюдают у восстановленных порошков из-за наличия остаточных окислов, микропор, полостей.

Микротвердость порошковой частицы характеризует ее способность к деформированию. Способность к деформированию в значительной степени зависит от содержания примесей в порошковой частице и дефектов кристаллической решетки. Для измерения микротвердости в шлифованную поверхность частицы вдавливают алмазную пирамиду с углом при вершине 136 под действием нагрузки порядка 0,5... 200г. Измерение выполняют на приборах для измерения микротвердости ПМТ-2 и ПМТ-З.

Технологические свойства порошка определяют: насыпная плотность, текучесть, прессуемость и формуемость.

Насыпная плотность - это масса единицы объема порошка при свободном заполнении объема.

Текучесть порошка характеризует скорость заполнения единицы объема и определяется массой порошка высыпавшегося через отверстие заданного диаметра в единицу времени. От текучести порошка зависит скорость заполнения инструмента и производительность при прессовании. Текучесть порошка обычно уменьшается с увеличением удельной поверхности и шероховатости частичек порошка и усложнением их формы. Последнее обстоятельство затрудняет относительное перемещение частиц .

Влажность также значительно уменьшает текучесть порошка.

Прессуемость и формуемость. Под прессуемостью порошка понимают свойство порошка приобретать при прессовании определенную плотность в зависимости от давления, а под формуе-мостью - свойство порошка сохранять заданную форму, полученную после уплотнения при минимальном давлении. Прессуемость в основном зависит от пластичности частиц порошка, а формуемость - от формы и состояния поверхности частиц. Чем выше насыпная массе порошка , тем хуже , в большинстве случаев , формуемость и лучше прессуемость. Количественно прессуемость определяется плотностью спрессованного брикета, формуемость оценивают качественно, по внешнему виду спрессованного брикета, или количественно - величиной давления, при котором получают неосыпающийся, прочный брикет.

Формование металлических порошков.

Целью формования порошка является придание заготовкам из

порошка формы,размеров, плотности и механической прочности, необходимых для последующего изготовления изделий. Формование включает следующиеоперации: отжиг

←предыдущая следующая→
1 2 3 4 5 6 



Copyright © 2005—2007 «Mark5»