Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Технология /

Разработка "высоковольтного драйвера" газоразрядного экрана на полиимидном носителе

←предыдущая  следующая→
1 2 3 4 5 



Скачать реферат


Содержание.

Глава 1. Введение ........................................ 3

Глава 2. Технологическая часть ........................... 6

2.1. Анализ существующих методов сборки .................. 7

2.1.1. Проволочные методы ................................ 7

2.1.2. Метод перевернутого кристалла ..................... 17

2.1.3. Современные конструкции гибких носителей для

монтажа БИС .............................................. 18

2.1.4. Метод переноса объемных выводов ................... 23

2.2. Разработка техпроцесса сборки "высоковольтного

драйвера" для газоразрядного экрана на полиимидном

носителе ................................................. 25

Глава 3. Конструкторская часть ........................... 26

3.1. Анализ конструкции экрана с применением

высоковольтного драйвера на полиимидном носителе ......... 27

3.2. Проектирование полиимидного носителя для сборки

высоковольтного драйвера ................................. 32

3.2.1. Автокад. Общие сведения ........................... 32

3.2.2. Конструкторско-технологические ограничения на

разработку полиимидного носителя ......................... 34

3.3. Разработка конструкции для крепления кристалла

при ультразвуковой сварке ................................ 41

Глава 4. Исследовательская часть ......................... 42

4.1. Анализ научно-технической информации по сварным

узлам лепестковых выводов бескорпусных БИС ............... 43

4.2. Оценка напряжений в сварных соединениях

бескорпусных БИС ......................................... 45

4.3. Конструктивное исполнение сварных узлов ............. 46

4.4. Расчет оптимальной рабочей длины балки,

в зависимости от толщины полиимида и толщины фольги ...... 48

4.5. Технологические рекомендации по выполнению

сварных узлов бескорпусных БИС ........................... 49

Глава 5. Расчет себестоимости высоковольтного

драйвера газоразрядного экрана и прогнозирование

путей ее снижения ........................................ 53

5.1. Понятие себестоимости ............................... 54

5.2. Затраты, включаемые в себестоимость ................. 55

5.3. Учет технологических потерь ......................... 56

5.4. Расчет себестоимости высоковольтного драйвера ....... 58

5.5. Пути снижения себестоимости ......................... 62

5.6. Расчет себестоимости изделия, учитывая пути

ее снижения .............................................. 63

5.7. Заключение .......................................... 65

Глава 6. Анализ производственно-экологической

безопасности при производстве высоковольтных драйверов

газоразрядных экранов .................................... 66

6.1. Анализ опасных и вредных воздействий при операциях

сборки и монтажа высоковольтных драйверов ................ 67

6.2. Требования безопасности при организации

технологических операций ................................. 72

6.3. Обеспечение экологической безопасности

на производстве .......................................... 78

6.4. Заключение .......................................... 82

Выводы ................................................... 83

Список литературы ........................................ 84

Приложение ............................................... 85

ВВЕДЕНИЕ

Глава 1.

Введение.

К настоящему времени микроэлектроника сформировалась как генеральное схемотехническое и конструктивно-технологическое направление в создании средств вычислительной техники, радио-техники и автоматики.

Основополагающая идея микроэлектроники - конструктивная интеграция элементов электронной схемы объективно приводит к интеграции схемотехнических, конструкторских и технологиче-ских решений, которая выражается в тесной взаимосвязи и взаи-мообусловленности всех этапов проектирования интегральной микросхемы. При этом главным связующим звеном всех этапов проектирования является задача обеспечения высокой надежности ИМС.

Важнейшей задачей схемотехнического проектирования, яв-ляется разработка быстродействующих и надежных схем, устойчи-во работающих при низких уровнях мощности (малая допустимая мощность рассеивания), в условиях сильных паразитных связей (высокая плотность упаковки) и при ограниченных по точности и стабильности параметров элементов. Потенциальная возможность ИМС на этом этапе проектирования оценивается с учетом возмож-ностей выбранного структурно технологического варианта ИМС и его технологической реализации.

Конструктор, стремясь сохранить быстродействие и надеж-ность ИМС на проектном уровне, определяет оптимальную техно-логию, выбирает материалы и технологические методы, обеспечи-вающие надежные электротехнические соединения, а также защиту от окружающей среды и механических воздействий с учетом тех-нологических возможностей и ограничений.

При технологическом проектировании синтезируется опти-мальная структура технологического процесса обработки и сбор-ки, позволяющая максимально использовать отработанные, типо-вые процессы и обеспечивать высокую воспроизводимость, мини-мальную трудоемкость и стоимость с учетом конструкторских требований.

Важным этапом технологического проектирования, направ-ленного на обеспечение качества и надежности ИМС, является разработка операций контроля на всех этапах производства ИМС: входного контроля основных и вспомогательных материалов и комплектующих изделий, контроля в процессе обработки, межопе-рационного контроля полуфабрикатов и выходного контроля гото-вых изделий.

Рост степени интеграции и функциональной насыщенности единицы объема изделий микроэлектроники, объективно приводит к микроминитюаризации их исполнения.

Практика показывает, что проблемы, связанные с микроми-нитюаризацией, комплексно могут быть решены на базе разработ-ки и внедрения новых конструктивно-технологических принципов сборки ИМС и аппаратуры на их основе.

ТЕХНОЛОГИЧЕСКАЯ

ЧАСТЬ

Глава 2.

2.1. Анализ существующих методов сборки БИС.

2.1.1. Проволочные методы сборки БИС.

Соединения проволокой является в настоящее время, к со-жалению, пока наиболее распространенным способом монтажа ИМС. Рассмотрим особенности этого способа.

Присоединение проволочных выводов.

Монтажные операции, связанные с присоединением выводов, осуществляются, во-первых, для создания внутрисхемных соеди-нений при монтаже кристаллов на подложках гибридных пленочных микросхем и микросборок (контактная площадка кристалла при этом соединяется с контактной площадкой подложки с помощью перемычки или непосредственно); во-вторых, для коммутации контактных площадок кристалла ИМС или периферийных контактов гибридных микросхем и микросборок с внешними выводами корпу-са.

Выводы можно присоединять микросваркой или пайкой.

С помощью пайки получают ремонтопригодные соединения. В то же время , паяное соединение характеризуется относительно большой плоскостью и сам процесс низкой производительностью, возможно растворение материала перемычек и пленочных контак-тов в расплавленном припое; воспроизводимость параметров со-единений не высока. В связи с этим применение пайки для при-соединения выводов ограничено.

рис 1

1-кристалл ; 2-вывод ; 3- внешний вывод;

При микросварке, соединение может быть получено за счет плавления и давления. Микросварка плавлением основана на сильном локальном нагреве и ускоренной взаимной диффузии со-единяемых материалов. Возможность образования при этом хруп-ких интерметаллических соединений и ухудшение адгезии тонких металлических пленок к подложке ограничивает применение этого метода.

Наиболее широко применяют разновидности микросварки дав-лением, при которых соединение формируется в твердой фазе за счет сжатия поверхностей и нагрева. Это обусловлено возможно-стью управления параметрами процесса, его механизации и авто-матизации, высоким качеством и воспроизводимостью параметров соединения. При микросварке давлением, формы и размеры свар-ной точки строго определены рабочей частью инструмента и пло-щадью получаемого соединения.

В

←предыдущая  следующая→
1 2 3 4 5 



Copyright © 2005—2007 «Mark5»