Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Физика /

Взаимодействие электронов с поверхностными акустическими волнами

←предыдущая следующая→  
1 2 



Скачать реферат


постоянного элект¬рического поля Е0, наносились на плоскость ху путем на¬пыления индия и представляли собой две параллельные полоски шириной 1,5 мм, находящиеся на расстоянии 7 мм друг от друга. Кристалл освещался ртутной лампой ДРШ-500, причем засвечивалась только узкая полоска (поверхностный слой 0.5 мм) между электродами. Осталь¬ная часть кристалла была закрыта непрозрачным экра¬ном. Такое освещение позволяло локализовать электроны проводимости кристалла (созданные светом) в поверхно¬стном слое между дрейфовыми электродами и этим до¬стигнуть постоянства напряженности Е0 по координате х (в пределах 10%). Для развязки импульсов дрейфового поля п импульсов с частотой заполнения 30 МГц. подавае¬мых на излучатель через коаксиальный кабель, использо¬вались индуктивность L и емкости С.

Электронная часть схемы для измерения усиления поперечных волн была точно такая же. за исключением развязки, которая осуществлялась там акустическим способом: с помощью двух клбических буферов из плав¬леного кварца, между которыми был зажат кристалл CdS. Дрейфовое поле подавалось на кристалл через индиевые электроды на его торцах, а поперечные волны распростра¬нялись через систему буфер — кристалл — буфер. Грани кристалла и буферов были параллельны с точностью ± 5 мкм. Все акустические контакты осуществлялись тонкими пленками эпоксидной смолы без отвердителя.

На рис. 3.18—3.21 приведены результаты измерений. а рис. 3.18 и 3.19 представлены кривые усиления рэле¬евских (рис. 3.18, а, 3.19, а) и поперечных (рис. 3.18, б, 3.19, б) волн в образцах 1, 2 соответственно. По осям абсцисс отложена напряженность дрейфового поля в кри¬сталле в киловольтах, по осям ординат — коэффициенты усиления (затухания) в дБ/см. Длина пути в кристалле, на которой происходило усиление рэлеевских волн, со¬ставляла 7мм, для поперечных волн эта длина равнялась 11.5 мм (образец 1) и 9,4 мм (образец 2). Каждая кривая на рисунках соответствует определенному значению электро¬проводности а кристалла. Области значений  выбира¬лись с таким расчетом, чтобы получить максимальные на данной частоте значения коэффициентов усиления волн в кристалле. На каждом из рисунков имеется по две тео¬ретических кривых, соответствующих граничным (максимальному и минимальному) значениям электропроводности образца (рис. 3.20, а, 3.21, а — опыты с рэлеевскими волнами, рис. электропроводно¬сти для данного типа волн в данном образце. Эти кривые нанесены тонкими сплошными линиями (чтобы не увели¬чивать существенно размер рисунка, масштаб изменения отложен для них на правых осях ординат). На рис. 3.20 и 3.21 изображены кривые усиления шу¬ма в образцах 1 и 2 соответственно при различных значе¬ниях 3.20, б, 3.21, б — опыты с поперечными волнами). Под шумом здесь по¬нимаются тепловые колебания решетки кристалла, уси¬ленные дрейфовым полем (волны Дебая). Естественно, что шумы измерялись в полосе пропускания схемы (28—32 МГц).

Уровень шума N, отложенный на рисунках по осям ординат, представляет собой 20 lg ш/0, εш — ЭДС развиваемая шумовым сигналом на приемнике;

ε 0— некоторый постоянный уровень (ЭДС темнового сигнала поперечных волн в образце 1).

3. Физическая модель процесса акустоэлектронного взаимодействия.

Передача импульса от волны электронам сопровождается поглощением звуковой энергии, поэтому действующая на электрон сила пропорциональна коэффициенту электронного поглощения звука e и интенсивности акустической волны I. Плоская волна, интенсивность которой при прохождении слоя толщиной x: уменьшается за счет электронного поглощения на величину eIx, передает в среду механический импульс

eIx/s, приходящийся на nex электронов слоя (vs - скорость звука. ne - концентрация свободных электронов). Следовательно, на отдельный электрон действует средняя сила

(1)

Под действием этой силы появляется акустоэлектрический ток, плотность которого Jac=neF( - подвижность электронов) определяется соотношением

Jac=eI/s (2)

(соотношение Вайнрайха). В случае произвольных акустических полей выражение для акустоэлектрического тока получается как среднее по времени значение произведения переменной концентрации свободных носителей n, возникающих под действием акустических полей в проводнике, и их переменной скорости v.

Jac=e< > (3) ,(e - заряд электрона).

Для наблюдения акустоэлектрического эффекта измеряют либо ток в проводнике, в котором внешним источником возбуждается звуковая волна, либо напряжение на его разомкнутых концах. В последнем случае на концах проводника возникает эдс, индуцированная звуковой волной (акустоэдс):

, (4)

где L - длина проводника. I0 - интенсивность звука на входе образца, a = ae+a0 – коэффициент поглощения звука, учитывающий как электронное поглощение ae так н решеточное ao, - проводимость образца.

Основной механизм поглощения в полупроводниках в широком диапазоне температур и частот электронное поглощение ультразвука. Несколько механизмов АЭВ, наличие различных типов носителей и примесных центров, возможность изменения концентрации и подвижности, влияние электрического и магнитного полей приводят к сложной картине акустического поглощения в полупроводниках. В пьезополупроводниках пьезоэлектрический механизм АЭВ преобладает над всеми другими при температуpax вплоть до комнатных и в диапазоне частот вплоть до десятков Гц и дает основной вклад в поглощение по сравнению с другими механизмами диссипации акустической энергии. Для комнатных температур, когда длина свободного пробега электрона много меньше длины волны (kle


←предыдущая следующая→  
1 2 



Copyright © 2005—2007 «Mark5»