Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Физика /

Магнитное поле Земли

←предыдущая  следующая→
1 2 3 



Скачать реферат


Межпланетное магнитное поле

Если бы межпланетное пространство было вакуумом, то единствен-ными магнитными полями в нем могли быть лишь поля Солнца и планет, а также поле галактического происхождения, которое простирается вдоль спиральных ветвей нашей Галактики. При этом поля Солнца и планет в межпланетном пространстве были бы крайне слабы.

На самом деле межпланетное пространство не является вакуумом, а заполнено ионизованным газом, испускаемым Солнцем (солнечным вет-ром ). Концентрация этого газа 1-10 см-3, типичные величины скоростей между 300 и 800 км/с, температура близка к 105 К (напомним, что температура короны 2106 К).

Поскольку газ солнечного ветра почти полностью ионизованный, то его электропроводность очень велика (102 Мо/см). Проводники с высокой проводимостью имеют особенность сопротивляться изменению маг-нитного поля. Другими словами, проникновение магнитного поля в такой проводник невозможно.

Движущийся солнечный ветер будет уносить солнечное магнитное поле в межпланетное пространство. Так как поток плазмы начинается в короне Солнца (или ниже нее), то в солнечном ветре имеются магнитные поля. Величина магнитных полей на Солнце составляет от 1 до 1000 Гс.

Поток солнечной плазмы «выметает» из внутренней части солнеч-ной системы планетные и галактические магнитные поля. Солнечный ве-тер будет «гнать» галактическое поле перед собой до тех пор, пока не бу-дет достигнуто динамическое равновесие между давлением солнечного ветра и давлением галактической среды. Это происходит на расстоянии от 10 до 100 астрономических единиц (а. е.). Следовательно, межпланет-ное пространство ограничено полостью в галактической среде, размеры которой дают верхнюю границу величины солнечно-межпланетного магнитного поля. Силовые линии магнитного поля солнечного ветра простираются в межпланетное пространство за орбиту Земли, при этом один их конец находится на Солнце. Характеристики солнечного ветра и меж-планетных магнитных полей нерегулярны и асимметричны из-за волок-нистой структуры короны, нерегулярностей магнитных полей в фотосфере и т. д.

Радиальная компонента межпланетного магнитного поля Вr должна уменьшаться обратно пропорционально квадрату расстояния от Солнца (т. е. как r-2). Она может быть выражена через величину радиальной ком-поненты поля на поверхности Солнца. Если на Солнце магнитное поле равно Br0= 0,5 Гс, то на расстоянии 1 а.е. поле .Br1.

Истечение плазмы из Солнца происходит таким образом, что плаз-ма просто отталкивает силовые линии поля и покидает Солнце в радиальном направлении. Если бы Солнце не вращалось, то такое радиаль-ное истечение плазмы привело бы к тому, что силовые линии магнитного поля были бы также радиальны и параллельны движению частиц. По-скольку Солнце вращается, то магнитное поле приобретает поперечную компоненту (в плоскостях, перпендикулярных оси вращения) и силовые линии магнитного поля становятся спиральными.

Направление спирального поля можно оценить, если предположить, что один конец силовой линии закреплен на Солнце и вращается вместе с ним. Тогда частицы, которые непрерывно испускаются данной областью вращающейся короны, будут двигаться в экваториальной плоскости по спиралям Архимеда. (Это напоминает работу вращающегося поливально-го устройства). Таким образом, межпланетное магнитное поле приобрета-ет и поперечную компоненту B. Можно оценить, что вблизи орбиты Земли угол спирали с радиусом составляет около 45° и радиальная и по-перечная компоненты B=Br=1.

Первые измерения магнитных полей за пределами магнитосферы Земли были проведены на спутнике «Пионер-1» в октябре 1958 г. Они по-зволили установить существование и положение области перехода от внешней части геомагнитного поля к межпланетному пространству. Эти результаты были подтверждены измерениями на других ИСЗ. Экспери-ментально было установлено, что имеются значительные нерегулярности, наложенные на спиральное межпланетное поле.

Спутниковые измерения межпланетного магнитного поля выявили тесную связь между величиной магнитного поля, перпендикулярного оси вращения аппарата (поперечной составляющей В), и значением магнит-ного индекса К или А.

Перед началом и в период геомагнитных бурь величина В увеличи-вается на порядок и приобретает более нерегулярный характер, чем в спокойные периоды.

Это объясняется тем, что плазма из возмущенных областей на Солн-це может уносить в межпланетное пространство более интенсивные и бо-лее нерегулярные поля. А это приводит к появлению нерегулярностей в спокойном межпланетном поле, что подтверждают измерения на спутниках.

Обнаружена также прямая корреляция между изменениями межпла-нетного поля по данным спутников и солнечной активностью. По этим данным была оценена средняя скорость распространения возмущения, равная 1000км/с.

Вектор межпланетного магнитного поля имеет радиальную состав-ляющую Вr, направленную или от Солнца (знак +), или к Солнцу (знак –). Межпланетное пространство разделено на чередующиеся спиральные секторы, в каждом из которых радиальная компонента направлена либо наружу, либо вовнутрь.

В пределах каждого сектора скорость солнечного ветра и плотность частиц систематически изменяются. Наблюдения с помощью ракет пока-зывают, что оба параметра резко увеличиваются на границе сектора. В конце второго дня после прохождения границы сектора плотность очень быстро, а затем, через два или три дня, медленно начинает расти. Ско-рость солнечного ветра уменьшается медленно на второй или третий день после достижения пика. Секторная структура и отмеченные вариации скорости и плотности тесно связаны с магнитосферными возмущениями. Секторная структура довольно устойчива, поэтому вся структура потока вращается с Солнцем по крайней мере в течение нескольких солнечных оборотов, проходя над Землей приблизительно через каждые 27 дней.

Магнитное поле земли

Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г. Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и соз-дал первые мировые магнитные карты (1702 г.). В 1835 г. Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене.

О распределении силовых линий магнитного дипольного поля и о магнитных полюсах наклонения Пс, Пю можно судить по рисунку.

Составляющие геомагнитного поля определены следующим образом. В любой точке О вектор напряженности магнитного поля В может быть разложен на составляющие, как это показано на рисунке. Можно выбрать в качестве составляющих абсолютную величину полного вектора В (модуль) и два угла: D и I. Угол D образован направлением на север и горизонтальной составляющей вектора В, т. е. Н; I – это угол между В и Н, Угол D считается положительным, если Н отклоняется к востоку, а I положительно при отклонении В вниз от горизонтальной плоскости. Величина D называется магнитным склонением, а I – наклонением. Вертикальная плоскость, которая проходит через Н, именуется местной магнитной меридиональной плоскостью.

Используется также разложение В на северную (X) и восточную (Y) составляющие вектора Н. Третьей служит вертикальная составляющая Z, которая считается положительной, если В направлено вниз. Напряженно-сти B, H, Z, X, Y измеряются в гауссах (Гс) или гаммах (). 1=10-5Гс. Уг-лы D и I измеряются в дуговых градусах и минутах. Все приведенные семь величин В, Н, D, I, X, У, Z называются магнитными элементами. Со-отношения между ними ясны из рисунка.

H=B cos I, Z=B sin I=H tg I,

X=H cos D, Y=H sin D,

X2+Y2=H2 X2+Y2+Z2=H2+Z2=B2

Ясно, что для полного описания вектора В достаточно иметь три не-зависимых элемента. По ним могут быть рассчитаны все остальные.

Обычная стрелка магнитного компаса уравновешивается, вращаясь горизонтально на вертикальной оси. В северной полусфере Земли почти везде северный полюс магнитной стрелки направлен вниз (т. е. I положи-тельно), а в южном полушарии I отрицательно, поскольку вниз направлен южный полюс стрелки. Линия, которая разделяет области положительно-го и отрицательного I, называется магнитным экватором или экватором наклонения. Естественно, что на ней I=0, т. е. магнитная стрелка в любой точке на этой кривой располагается горизонтально.

На полюсах магнитного наклонения горизонтальная компонента полного вектора В исчезает и магнитная стрелка устанавливается верти-кально. Эти точки еще называют полюсами наклонения. Таких точек в принципе может быть несколько. Две основные из них обычно называют-ся магнитными полюсами Земли. Они расположены в Арктике и в Ан-тарктиде. Координаты их 75°,6 с. ш., 101° з. д. и 66°,3 ю.ш., 141° в. д. Ме-стоположение магнитных полюсов не является постоянным. Приведен-ные выше координаты относятся к эпохе 1965 г.

Чтобы определить азимут вектора Н, нужно выбрать некоторое ну-левое направление, от которого можно отсчитывать магнитное склонение D. За такое направление принято направление на северный географиче-ский полюс. Таким образом, D определяется относительно условного направления, поскольку ось вращения Земли не связана непосредственно с конфигурацией геомагнитного поля. То же относится и к элементам Х и Y. Поэтому D, X, Y называют относительными магнитными элементами, тогда как H, Z и I именуются собственными магнитными элементами.

Несколько слов о магнитных картах. Обычно через каждые 5 лет распределение магнитного поля на поверхности

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»