Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Физика /

Сверхпроводимость и ее применение в физическом эксперименте

←предыдущая следующая→
1 2 3 4 5 



Скачать реферат


особого строе-ния возможна сверхпроводимость при комнатных температурах. Основная идея заключалась в том, чтобы получить своеобразную полимерную нитку с регулярно расположенными электрон-ными фрагментами. Корреляция электронов, движущихся вдоль цепочки, осуществляется за счет поляризации этих фрагментов, а не кристаллической решетки. Поскольку масса электрона на не-сколько порядков меньше массы любого иона, поляризация электронных фрагментов может быть более сильной, а критическая температура более высокой, чем при фоновом механизме.

В основе теоретической модели высокотемпературной сверхпроводимости, разработанной академиком В.Л.Гинзбургом, лежит так называемый экситонный механизм взаимодействия элек-тронов. Дело в том, что в электронной системе существуют особые волны - экситоны. Подобно фононам они являются квазичастицами, перемещающимися по кристаллу и не связанными с пе-реносом электрического заряда и массы. Модельный образец такого сверхпроводника представ-ляет собой металлическую пленку в слоях диэлектрика или полупроводника. Электроны прово-димости, движущиеся в металле, отталкивают электроны диэлектрика, то есть окружают себя облаком избыточного положительного заряда, который и приводит к образованию электронной пары. Такой механизм корреляции электронов предсказывает весьма высокие значения критиче-ской температуры (Тc=200 К).

ИСПОЛЬЗОВАНИЕ СВЕРХПРОВОДИМОСТИ.

Идея высокотемпературной сверхпроводимости (ВТСП) в органических соединениях была выдвинута в 1950г. Ф.Лондоном и лишь спустя 14 лет появился отклик на эту идею в работах американского физика В.Литтла, вызвавший критические отзывы, отрицающие возможность ВТСП в неметаллических системах. Таким образом, хотя идея ВТСП родилась в работе Ф. Лон-дона в 1950г., годом рождения проблемы следует считать время появления первых, пока, правда, малочисленных потоков информации по ВТСП - 1964г.. Если рассмотреть эволюцию температу-ры сверхпроводящего перехода,, то станет ясно, что рост температуры сверхпроводящего пере-хода приводил к возможности использования хладагентов с все более высокой температурой ки-пения (жидкий гелий, водород, неон, азот). Хотя до азотных температур перехода, открытых не-давно в металлокерамиках, практически использовался для охлаждения жидкий гелий, однако скачки в росте температуры перехода дают право положить их в основу периодизации ВТСП о гелиевом, водородном, неоновом и, наконец, азотном периодах ВТСП. Так Nb3Sn сменился Nb - Al - Ge, затем наибольшая температура была обнаружена d 1973-81гг. у Nb3Ge (23,9 K), которая оставалась рекордной вплоть до сверхпроводимости металлокерамиками. La - Sr - Cu - O при 30 К в 86г., вырастая до 100 К на материале I - Ba - Cu - O.

Ключевым для проблемы ВТСП является вопрос критической температуры от характеристики вещества. С открытием в 86 нового класса сверхпроводящих материалов с более высокими, чем ранее критическими температурами, во всем мире развернулись работы по изучению по изуче-нию свойств ВТСП с целью определения возможности их применения в различных областях науки и техники. Интерес к ВТСП объясняется в первую очередь тем, что повышение рабочей температуры до азотной позволит существенно упростить и удешевить системы криогенного обеспечения, повысить их надежность. Для успешного применения ВТСП в сильноточных уст-ройствах (соленоидах, накопителях энергии, электромагнитах, транспорте с магнитным подве-сом) необходимо решить ряд вопросов. Одной из важнейших проблем при создании сильноточ-ных устройств с использованием ВТСП является проблема обеспечения устойчивой работы об-моток с током. Проблема стабилизации ВТСП включает в себя несколько аспектов. Внутренним свойством сверхпроводимости является скачкообразный характер проникновения в них магнит-ного поля. Этот процесс сопровождается выделением части запасенной энергии магнитного поля при его распределении. Поэтому, наиболее важное направление стабилизации сверхпроводников - их стабилизация против сигналов потока. Кроме того, проводники, внутренне стабилизирован-ные против сигналов потока, при работе подвергаются действию различного рода возмущений как механического, так и электромагнитного характера, тоже сопровождающиеся выделением энергии.

Основные характеристики композитных ВТСП-проводников

Традиционные сверхпроводники второго рода (сплавы Nb - Ti, соединение Nb3Sn) применя-ются в сверхпроводящих магнитных системах в виде композитов с матрицей из нормального ме-тала с высокими тепло- и электропроводностью. Наличие пластичной матрицы (чаще всего мед-ной) значительно облегчает изготовление тонких длинномерных проводников волочением или прокаткой, то есть сверхпроводящие материалы отличаются хрупкостью. Стабильность сверх-проводимости - состояние относительно скачков магнитного потока - достигается путем изго-товления проводников с весьма малым диаметром отдельных сверхпроводящих или же лент с малой толщиной сверхпроводящего слоя. По этим же причинам ВТСП-проводники в большинстве случаев изготавливаются в форме композитов, имеющих малую толщину или диаметр. Дополнительная причина применения нормального металла связана с необходимостью защиты ВТСП-материала от влажности и других факторов окружающей Среды, вызывающих деградацию оксидного сверхпроводника. Наилучшие результаты получены при использовании серебряной матрицы или обмотки сверхпроводника: кроме того, что серебро лишь в минимальной степени реагирует с ВТСП или его исходной продукции даже при высокой температуре синтеза, серебро отличается высокой диффузионной проницательностью для кислорода, что необходимо при синтезе и обжиге ВТСП.

В настоящее время все усилия в области ВТСП наряду с совершенствованием их свойств и способов получения направлены на создание изделий на основе ВТСП, пригодных для примене-ния в радиоэлектронных системах для детектирования, аналоговой и цифровой обработки сигна-лов.

Основными достоинствами ВТСП являются отсутствие потерь на постоянном и сравнительно небольшие потери на переменном токах, возможность экранирования магнитных и электромаг-нитных полей, возможность передачи сигналов с крайне малыми искажениями.

Параметром, непосредственно определяющим высокочастотные свойства ВТСП материалов, является их поверхностное сопротивление. В обычных металлах поверхностное сопротивление увеличивается пропорционально квадратному корню из частоты, в то время как в ВТСП - про-порционально ее квадрату. Однако, благодаря тому, что начальное значение поверхностного со-противления (на постоянном токе) у ВТСП на несколько порядков ниже, чем у металлов, высо-кокачественные ВТСП сохраняют преимущества по сравнению с металлами при частоте до не-скольких сотен гигагерц.

Интерес к вопросу практического использования сверхпроводников появился в 50-х гг., когда были открыты сверхпроводники второго рода с высокими критическими параметрами, как по значению плотности тока, так и по величине магнитной индукции. В настоящее время использо-вания явления сверхпроводимости приобретает все больше практическое значение.

Применение сверхпроводников потребовало решения ряда новых задач, в частности, интен-сивного развития материаловедения в области низких температур. При это исследовались не только сверхпроводники собственно, но и конструкции и изоляционные материалы.

Наибольшее распространение из сверхпроводящих материалов в электротехнике получили сплав ниобий-титан и интерметаллид ниобий-олово. Технологические процессы изготовления исключительно тонких ниобий-титановых нитей и их стабилизации достигли весьма высокого уровня развития. При создании многожильных проводников на основе ниобия олова широкое применение находит так называемая бронзовая технология.

Развитие сверхпроводниковой техники также связано с созданием ожижителей и рефрижера-торов все большей хладопроизводительности на уровне температур жидкого гелия.

Наиболее широкое реальное применение сверхпроводимость находит при создании крупных электромагнитных систем. В 80-х гг. в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тероидального магнитного поля.

Сверхпроводящие катушки используются также для пузырьковых водородных камер, для крупных ускорителей элементарных частиц. Изготовление таких катушек для ускорителей до-вольно сложно, так как требование исключительно высокой однородности магнитного поля вы-зывает необходимость точного соблюдения заданных размеров.

В последние годы имеет место все более широкое использование явления сверхпроводимости для турбогенераторов, электродвигателей, униполярных машин, топологических генераторов, жестких и гибких кабелей, коммутационных и токоограничивающих устройств, магнитных сепа-раторов, транспортных систем и др.. Следует также отметить важное направление в работах по сверхпроводимости - создание измерительных устройств для измерения температур, расходов, уровней, давлений и т.д.

На настоящий момент имеются два главных направления в области применения сверхпрово-димости. Это, прежде всего магнитные системы различного назначения и затем - электрические машины (прежде всего турбогенераторы).

Применение сверхпроводимости в турбогенераторах большой мощности перспективно пото-му, что именно здесь удается достигнуть того, чего при других технических решениях сделать невозможно, а именно, уменьшить массу и габариты машины при сохранении мощности. В обычных машинах это уменьшение всегда связано с увеличением потерь и трудностями обеспе-чения высокого КПД. Здесь этот вопрос решается радикально: массу турбогенераторов можно увеличить в 2-2,5 раза, в тоже время в связи с отсутствием потерь в роторе удается повысить КПД примерно на 0,5% и приблизиться для крупных турбогенераторов к КПД порядка 99,3%. Повышение КПД турбогенераторов на 0.1% компенсирует затраты, связанные

←предыдущая следующая→
1 2 3 4 5 



Copyright © 2005—2007 «Mark5»