Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Физика /

Связанные контура

←предыдущая  следующая→
1 2 3 



Скачать реферат


СВЯЗАННЫЕ КОНТУРА

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 2

ОСНОВНЫЕ ПОНЯТИЯ. 2

КОНТУР, ЭКВИВАЛЕНТНЫЙ СВЯЗАННЫМ КОНТУРАМ. ВНОСИМЫЕ СОПРОТИВЛЕНИЯ. 3

РЕЗОНАНСНЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СВЯЗАННЫХ КОНТУРОВ. 5

ПОЛОСА ПРОПУСКАНИЯ СИСТЕМЫ ДВУХ СВЯЗАННЫХ КОНТУРОВ. 11

ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ В СВЯЗАННЫХ КОНТУРАХ. 12

НАСТРОЙКА СИСТЕМЫ ДВУХ СВЯЗАННЫХ КОНТУРОВ. 13

ПРОХОЖДЕНИЕ РАДИОИМПУЛЬСА ЧЕРЕЗ ДВУХКОНТУРНУЮ СВЯЗАННУЮ СИСТЕМУ 15

ЛИТЕРАТУРА 18

Введение.

В радиотехнике широкое применение находят всевозможные колебательные контура. Основное назначение радиотехнических колебательных цепей - получение с их помощью частотной избирательности, т.е. выделения полезного сигнала и подавления всех остальных сигналов и помех. Ввиду того что с помощью одиночного колебательного контура нельзя получить высокую избирательность при широкой полосе пропускания, используют связанные контуры. В радиотехни¬ке такие контуры применяются в основном как фильтры промежуточ¬ной частоты (ФПЧ).

Основные понятия.

Два контура называются связанными, если колебания, происходя¬щие в одном из них, захватывают другой контур. Связь между кон¬турами может осуществляться через электрическое поле (благодаря емкости) или через магнитное поле (благодаря взаимоиндуктивности или индуктивности). На рис. 1 показаны три разновидности связи двух колебательных контуров: а) трансформаторная, когда связь между контурами осуществляется благодаря взаимоиндуктивности между катушками L1 и L2; б) автотрансформаторная, когда связь между контурами осуществляется непосредственно через индуктивность связи L1,2; в) емкостная, когда связь между контурами осуществляется через емкость связи С3. Наиболее часто в радиотехнике применяется трансформаторная связь, поэтому все дальнейшие выкладки проведем для этого вида связи.

Рис. 1. Виды связи двух колебательных контуров

Предположим, что в первом контуре на рис.1, а протекает ток i1, а второй контур разомкнут. Тогда отношение напряжения, индуцированного в катушке L2, к напряжению в катушке L1 выразится коэффициентом

который называется степенью связи. Аналогично, если предположить разомкнутым первый контур, а источник э.д.с. подключить ко второму контуру, то при протекании в нем тока i2 получим

Коэффициент связи есть корень квадратный из произведения степеней связи . (1)

При трансформаторной связи . (2)

Если умножить числитель и знаменатель (2) на , то получим общее выражение для коэффициента связи, пригодное и для других видов связи

(3)

где XM - сопротивление связи.

Контур, эквивалентный связанным контурам. Вносимые сопротивления.

Рассмотрим систему двух колебательных контуров с трансформаторной связью, в которой к первому контуру подключен источник э.д.с. e(t) (рис. 2,а), а r1 и r2 - выделенные для анализа сопротивления потерь в контурах.

а

б

Рис.2. Система двух колебательных контуров с трансформаторной связью (а) и ее эквивалентная схема (б)

Запишем для каждого контура уравнения Кирхгофа

(4)

Считая э.д.с. синусоидальной и режим в цепи установившимся, можно воспользоваться символическим методом анализа. Тогда ; и (4) принимает вид

(5)

Обозначив реактивное сопротивление первого и второго контуров через X1 и X2, (5) можно записать так:

(6)

Найдем из второго уравнения

(7)

Обозначив М = XСВ (сопротивление связи), (7) можно переписать так:

Подставив значение из (7) в первое уравнение системы (6)

Освободившись от мнимости в знаменателе, получим

или

так как .

Поделив в полученном выражении приложенную э.д.с. на ток запишем выражение для эквивалентного входного сопротивления системы двух связанных колебательных контуров

(8)

Модуль сопротивления Z1Э равен

(9)

Анализ (8) показывает, что в результате связи первого контура со вторым в первый контур как бы вносятся два сопротивления: активное

и реактивное (10)

Таким образом, систему двух связанных колебательных конту¬ров можно заменить одним эквивалентным контуром (рис. 2, б), в который вносится сопротивление

Суммарное активное сопротивление R1э = r1+ Rвн всегда положи¬тельное, а знак суммарного реактивного сопротивления Х1э=Х1+Хвн определяется настройкой каждого из контуров в отдельности (знаки X1 и Х2 и, следовательно, Хвн зависят от частоты, на которую настроен каждый контур).

Резонансные характеристики системы двух связанных контуров.

Под амплитудно-частотными резонансными характеристиками си¬стемы двух связанных контуров будем подразумевать зависимость амп¬литуд токов первого и второго контуров от частоты. Считая, что оба контура настроены на одну и ту же частоту 0 выделим модули тока первого и второго контуров при наличии связи между ними.

Если записать в символической форме и то

(11)

где Модуль (11) есть

(12)

На основании (7), с учетом того что и имеем

(13)

где и . Запишем Модуль (13) с учетом (12) и (9)

Выражения (12) и (14) представляют собой уравнения резонансных характеристик для I1 и I2 соответственно в неявной относительно частоты форме. Таким образом, если построить зависимости модулей I1 и I2 от частоты, то это и будут амплитудно-частотные резонансные характеристики. При построении их будем исходить из двух случаев связи между контурами; слабой и сильной. Сначала займемся построе¬нием I1(). Как видно из (12), частотную зависимость I1 определяет частотная зависимость Z1э(), поскольку э. д. с. источника Е от частоты не зависит. Таким образом, построение сводится сначала к построению зависимости Z1э(), а затем — зависимости I1() как частного от деления Е на Z1э.

Выразив модуль Z1э() через компоненты

построим попарно зависимости r1 и rвн , Х1 и Хвн от частоты, а Z1э найдем графически, как геометрическую сумму r1+ Rвн и Х1+ Хвн. I1 строим в соответствии с (12). Построение проводим при небольших расстройках относительно резонансной частоты. Получаемые зависи¬мости при слабой связи между контурами имеют вид, показанный на рис. 3, а при сильной связи—на рис. 4.

Рис. 3. Частотные зависимости входного сопротивления, его составляющих и тока I1 системы двух связанных контуров при слабой связи между ними

Рис. 4. Частотные зависимости входного сопротивления, его составляющих и тока I1 системы двух связанных контуров при сильной связи между ними

Как видно, при слабой связи между контурами вследствие малости ХВН по сравнению с Х1 кривая X1э () пересекает ось частот только в одной точке о. При сильной связи между контурами вследствие значительной величины ХВН, которая на некоторых частотах превы¬шает по абсолютной величине Х1, имея обратный знак, суммарная кри¬вая Х1э () пересекает ось частот в трех точках: 01 , 0 и 02. Други¬ми словами, результирующее реактивное сопротивление системы равно нулю не только на частоте 0, но и на частотах 01 и 02, называемых частотами связи. Учитывая еще то обстоятельство, что при сильной связи между контурами сопротивления RВН на частоте 0 и в близлежащей области большие, чем при слабой, понятен двугорбый харак¬тер кривых Z1э() и I1() с максимумами на частотах  1 и  2.

Очевидно, имеется граничная связь, превышение которой ведет к двугорбости амплитудно-частотной резонансной характеристики то¬ка первичного контура. Такая связь называется первичной критиче¬ской связью, а соответствующий ей коэффициент связи — первичным критическим коэффициентом связи (kкр1). Амплитудно-частотную ре¬зонансную характеристику вторичного тока строим на основании по¬лученных характеристик первичного тока и (14). Для того чтобы можно было сравнивать амплитудно-частотные резонансные характерис¬тики первичного и вторичного токов, их надо строить на одном рисун¬ке по отношению к резонансным значениям Z2, т.е. и. . Согласно (14) Таким образом , для построения амплитудно-частотных характеристик вторичного то¬ка достаточно перемножить координаты кривых I1 () / I1p и r2 /Z2 ()

Указанные построения для связи, меньше критической, выполне¬ны на рис. 5, а, а для связи, больше критической,— на рис. 2. 19, б. Как видно из рис. 5, б, двугорбость кривой первичного

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»