Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Физика /

Электричество в живых организмах

←предыдущая  следующая→
1 2 



Скачать реферат


Электричество

в

живых организмах.

Доклад по физике на тему:

“Физика и биология.,,

Сизов Илья 9/г Школа №49

Введение.

Ф

изика и биология, на первый взгляд, довольно далекие друг от друга науки. Но это только на первый взгляд. В действительности же в этих науках есть много общих точек. Например, в анатомии, зрение. Здесь присутствует элемент оптики: лучи света преломляются в хрусталике глаза, и элемент механики: хрусталик деформируется мышцами. Хотя, говоря о мышцах, нельзя не упомянуть о том, что их работа напрямую связана с физикой. Ведь по сути дела, механизм их действия, сокращение в связи с сокращением белковых нитей, физический процесс. А обмен веществ? Ведь питательные вещества переходят из крови в межклеточное вещество, из межклеточного вещества в клетку и из клетки в межклеточное вещество в основном из-за перепада в дав-лении. А нагревание внешних тканей тела кровью вследствие теплопередачи? И физика стыкуется с биологией не только в анатомии. У птиц есть аэродинамическое оперение, у рыб гидродинамическая чешуя и боковая линия, для улавливания коле-баний воды. Опять же слух…

Но я хотел бы коснуться стыка, который, по-моему, играет особую роль. Это стык электричества и зоологии с анатомией или электричество в живых организмах.

Немного истории…

п

римерно в середине XVIII века мышечное сокращение стало предметом экспериментального изучения многих ученых. Швейцарский ученый А. Галлер в ряде опытов показал, что скелетные мышцы, мышцы желудка, сердечная мышца отвечают на прямое механическое, химическое и электрическое раздражение. Когда соответствующая мышца вне организма и отделена от нервов. В 1763 году один из последователей Галлера Ф. Фонтана сделал важное открытие. Он показал, что сердце может либо ответить, либо не ответить на одно и то же раз-дражение, в зависимости от того, через какой промежуток времени после предыдущего сокращения наносится раздражение. Роль нервных волокон, в то время, сохранила, в принципе, правильное определение данное античными учеными. Они считали, что через нервы передаются какие-то влияния – от мозга к мышцам и от ор-ганов чувств к мозгу. Однако уже в XVIII веке этого было уже не достаточно. Хотелось понять, какова же природа сигналов, перете-кающих по нервам. Среди множества теорий возникавших в сере-дине XVIII века, под влиянием всеобщей увлеченности электриче-ством, появилась теория о том, что по нервам передается ''электри-ческий флюид''. Это в первые, в 1743 году, выдвинул в виде гипо-тезы немецкий ученый Ганзен. В 1749 году французский врач Дюфей защитил диссертацию на тему “Не является ли нервная жидкость электричеством?”. Эту же идею поддержал в 1774 году английский ученый Пристли.

Идея летала в воздухе. Но этим не возможно объяснить тот факт, что помощник итальянского врача Луиджи Гальвани, кото-рый помимо преподавания в Болонском университете занимался практической анатомией, очень удивился, наблюдая сокращения лягушачьей лапки, к которой подвили контакт от электрической машины. Это можно объяснить тем, что до сего момента раздра-жающее действие наблюдали только при непосредственном кон-такте заряженного тела с нервом или мышцей. Вскоре выходит “Трактат о силах электричества при мышечном движении” Гальва-ни. Он попадает в руки знаменитому физику и профессору универ-ситета в Павии Алессандро Вольта. В первые 10 дней, после по-лучения “Трактата…”, Вольта начал активно ставить опыты кото-рые полностью подтверждают результаты Гальвани. Вольта решил внести меру в эту новую область науки, так как по собственным словам “…никогда нельзя сделать ничего ценного, если не сводить явлений к градусам и измерениям, особенно в физике”. Из-за того, что Вольта интересует количественная сторона дела, он ищет ус-ловия, при которых минимальный заряд вызывает сокращение. При этом он выясняет, что лучше всего сокращение возникает то-гда, когда внешним проводником замыкаются два разных участка хорошо отпрепарированного нерва. Тем самым он показал, что не мышца разряжается в нерв, а нерв возбуждается и передает что-то мышце. Это вызвало у Вольта сомнение не только в теоретической правоте Гальвани, но и в самом существовании “живого электри-чества”. Это положило начало великому спору между сторонника-ми Вольта и Гальвани. Чтоб доказать сваю правоту, Гальвани про-водит ряд опытов:

Опыт 1. Бралась мышца с отходящим от нее нервом. Нерв перерезался и приводился в соприкосновение с мышцей стеклян-ной палочкой. В момент прикосновения мышца сокращалась. Гальвани отмечал, что для воспроизведения опта нужен новый нерв.

Опыт 2. Брались две мышцы, с отходящими нервами. Один нерв укладывался в виде дуги, а второй располагался так, чтобы одна его точка касалась неповрежденного участка, а вторая – как можно ближе к поврежденной части. Мышца, связанная со вторым нервом, сокращалась.

Опыт 3.Вновь брались две мышцы, с отходящими нервами. Нерв второй мышцы помещался на первую. Раздражался первый нерв, от чего сокращалась вторая мышца.

Эти опыты действительно доказывали, что в мышцах обра-зуется электричество. Но Вольта и его сторонники списывали ре-зультаты Гальвани на различные причины:

1. Вольта высказывал предположение, что “двигателем” электри-ческого флюида может быть не только контакт металлов, но и контакт разных жидкостей. Ведь во всех опытах Гальвани при-сутствовали различные жидкости. Значит нельзя быть уверен-ным, в том, от чего возникает электричество.

2. Во всех опытах Гальвани присутствует механическое движение (либо сокращение мышц, либо движение нерва). Возможно, причиной сокращения мышц является механическое возбужде-ние, - предполагал Вольта.

3. И, наконец, пусть даже сокращающаяся мышца возбудила нерв. Но почему нерв возбуждается от электричества? Извест-но, что возбудить нерв можно давлением, разностью темпера-тур.

Этот спор был началом электробиологии. Потом был Дюбуа-Раймонд, он создал точные приборы для измерения биотоков, но, по-моему, фактическими создателями электробиологии являются Гальвани Вольта.

Как появляется элек-тричество в клетке?

Е

ще в 1890 году Вильгельм Оствальд, который продолжал заниматься полупроницаемыми искусственными пленками предположил, что полупроницаемость может быть причиной не только осмоса, но и электрических явлений. Осмос возникает тогда, когда пленка пропускает маленькие молекулы воды и не пропускает большие молекулы сахара. Но ведь ионы могут быть тоже разно величены! Тогда мембрана будет пропускать ионы только одного знака, например, положительного. Действительно, если посмотреть на формулу Нернста для диффузионного по-тенциала Vд возникающего на границе двух растворов с концен-трациями электролита С1 и С2:

Vд = (u – v)/(u + v)-1 *(RT/ F)*ln C1 /C2

где u – скорость более быстрого иона, v - скорость более медлен-ного иона, R – универсальная газовая постоянная, F - число Фара-дея, T – температура, и предположить, что мембрана для анионов не проницаема, то есть v = 0, то можно видеть, что должны появ-ляться большие значения для Vд:

Vм=(RT/ F)*ln C1 /C2

Таким образом, Оствальд объединил формулу Нернста и знание о полупроницаемых мембранах. Он предположил, что свойствами такой мембраны объясняются потенциалы мышц и нервов и удивительное действие электрических органов рыб.

Решающий шаг сделал ученый школы Дюбуа-Раймонда Юлиус Бернштейн. Он объяснил электрические свойства мышц и нервов не устройством этих органов в целом, а свойствами клеток, из которых состоят все ткани и органы. Наконец-то, был прямо указан “виновник”, создающий “животное электричество”, - кле-точная мембрана, а “оружие” – перенос ионов. Таким образом, в гипотезе Бернштейна объединяются электрохимия и клеточная теория. Юлиус Бернштейн считается основателем мембранной теории биопотенциалов.

Передача информа-ции в организме.

П

режде чем заняться рассмотрением собственно передачей информации в организме, давайте поподробнее коснемся мембраны клетки. Клеточная мембрана – жидкая пленка, образованная липидами - жироподобными веществами. Она состоит из двух слоев липидных молекул, в которые встроены молекулы белка. Нас интересуют, прежде всего, электрические ха-рактеристики мембраны, которые начал изучать еще в 1910 году немецкий физик и химик В. Нернст, тот самый Нернст, который вывел формулу диффузионного потенциала. Измерения проводились следующим образом: через суспензию клеток прово-дился ток разной частоты, и определяли ее удельное сопротивле-ние. Была развита специальная теория, позволявшая отдельно оп-ределить сопротивление мембраны и ее протоплазмы. Развивая это направление, Г. Фрикке в 1925 году показал, что мембрана ведет себя в опытах, как параллельно соединенные сопротивление и. конденсатор

Эквивалентная схема

клеточной мембра-ны: А – среда, окру-жающая клетку, В – цитоплазма.

То есть выяснил эквивалентную схему клеточной мембраны. Пер-воначально, он установил эту схему для мембраны эритроцитов.

Фрикке использовал при измерениях частоты до 4,5 МГц, это зна-чит, что ему содействовало развитее техники – появление генера-торов высокой частоты. Дальнейшие исследования показали, что емкость мембраны примерно 1 мкФ/см2, а удельное сопротивление протоплазмы близко к 100 Ом*см. Напротив, удельное

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»