Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Физика /

Электрокинетические явления при фильтрации жидкости в пористой среде

←предыдущая  следующая→
1 2 3 



Скачать реферат


Министерство общего и профессионального образования РФ

Башкирский государственный университет

Физический факультет

Кафедра прикладной физики

КУРСОВАЯ РАБОТА

Тема: «Электрокинетические явления и их роль при фильтрации углеводородной жидкости в пористой среде»

Выполнил: студент III курса

группы ФГД Магадеев А.В.

Научный руководитель:

Академик РАЕН, член-корр.

АН РБ, доктор физ. - мат. наук,

проф. Саяхов Ф.Л.

Уфа-1999

ОГЛАВЛЕНИЕ

1. Физика электрокинетических явлений 3

2. Потенциал и ток течения фильтрации жидкости в пористой среде. Методы их экспериментального исследования 7

3. Электрокинетические явления при воздействии внешнего

электрического поля 9

4. Электрокинетические явления в нефтедобыче 15

ЛИТЕРАТУРА 17

1. ФИЗИКА ЭЛЕКТРОКИНЕТИЧЕСКИХ ЯВЛЕНИЙ

Электрокинетические явления определяют многие особенности фильтрации жидкостей через пористые среды. Эти особенности, очевидно, связаны с электрофизическими свойствами, как пористой среды, так и насыщающей жидкости. Эти явления связаны с наличием ионно-электростатических полей и границ поверхностей в растворах электролитов (двойной электрический слой). Распределение ионов в электролите у заряженной поверхности пористой среды имеет диффузный характер, т.е. противоионы не располагаются в каком-то одном слое, за пределами которого электрическое поле отсутствует, а находиться у поверхности в виде “ионной атмосферы”, возникающей вследствие теплового движения ионов и молекул жидкости. Концентрация ионов, наибольшая вблизи адсорбированного слоя, убывает с расстоянием от твердой поверхности до тех пор, пока не сравняется со средней их концентрацией в растворе. Область между диффузной частью двойного слоя и поверхностью твердого тела называют плотной частью двойного электрического слоя (слой Гельмгольца) на рисунке 1 схематически показано распределение потенциала в двойном электрическом слое (при отсутствии специфической, т.е. не электростатической адсорбции). Толщина плотной части d двойного электрического слоя приблизительно равна радиусу ионов, составляющих слой.

Рис. 1: Распределение потенциала в двойном электрическом слое

 - потенциал между поверхностью твердого тела и электролитом, ζ - потенциал диффузной части двойного слоя

Толщина диффузной части λ двойного слоя в очень разбавленных растворах составляет несколько сотен нанометров.

При относительном движении твердой и жидкой фазы скольжение происходит не у самой твердой поверхности, а на некотором расстоянии, имеющем размеры, близкие к молекулярным.

Интенсивность электрокинетических процессов характеризуются не всем скачком потенциала между твердой фазой и жидкостью, а значит его между частью жидкости, неразрывно связанной с твердой фазой, и остальным раствором (электрокинетический потенциал или ζ – потенциал). Наличие двойного электрического слоя на границах разделов способствует возникновению электрокинетических явлений (электроосмоса, электрофореза, потенциала протекания и др.). Все они имеют общий механизм возникновения связанный с относительным движением твердой фазы. При движении электролита в пористой среде образуется электрическое поле (потенциал протекания). Если на пористую среду будет действовать электрическое поле, то под влиянием ионов происходит движение раствора электролита в связи с тем, что направленный поток избыточных ионов диффузного слоя увлекает за собой массу жидкости в пористой среде под действием трения и молекулярного сцепления. Этот процесс называется электроосмосом. При действии электрического поля на смесь дисперсных частиц происходит движение дисперсной фазы. Это называется электрофорезом. В таком случае частицы раздробленной твердой или жидкой фазы переносятся к катоду или аноду в массе неподвижной дисперсной среды.

По природе электрофорез зеркальное отображение электроосмоса, и поэтому эти явления описываются уравнениями имеющими одинаковую структуру. Количественно зависимость скорости электроосмоса от параметров электрического поля и свойств пористой среды и жидкостей описывается формулой Гельмгольца-Смолуховского:

(1.1)

где υ - расход жидкости под действием электроосмоса;

S – суммарная площадь поперечного сечения капиллярных каналов пористой среды;

ζ – падение потенциала в подвижной части двойного слоя (дзета-потенциал);

D – диэлектрическая проницаемость;

h = E/L – градиент потенциала;

Е. – потенциал, приложенный к пористой среде длинной L;

μ – вязкость жидкости.

Учитывая, что сопротивление жидкости

, (1.2) а (1.3)

(1.4)

где χ –удельная электропроводимость жидкости;

I – сила тока, можно написать

(1.5)

Формулу (1.1) можно представить по формуле аналогичной закону Дарси.

(1.6)

Здесь F – площадь образца, m – пористость образца;

Rэ – электроосмотический коэффициент проницаемости.

По закону Дарси расход жидкости

(1.7)

При совпадении направления фильтрации с результатом проявления электроосмоса суммарный расход жидкости

(1.8)

или

(1.8а)

Для оценки степени участия в потоке электроосмических процессов в зависимости приложенного потенциала можно также использовать соотношение

(1.9)

Принципиальная возможность повышение скорости фильтрации за счет электроосмоса доказано экспериментально. Однако многие вопросы приложения электрокинетических явлений в нефтепромысловой практике недостаточно изучены.

Как следует, из уравнения Гельмгольца-Смолуховского, интенсивность электроосмоса зависит в значительной мере от ζ – потенциала, который обладает характерными свойствами, зависящими от строения диффузного слоя. Особый интерес для промысловой практики представляет зависимость значения ζ – потенциала от концентрации и свойств электролитов. Сопровождается уменьшением толщины диффузного слоя и снижением электрокинетического потенциала. При некоторой концентрации электролита скорость электрокинетических процессов становиться равной нулю.

Электрокинетический потенциал может при этом не только быть равным нулю, но и приобретать противоположный знак. Это явление наблюдается при значительной адсорбции ионов на поверхности когда общий заряд ионов в плотном слое может оказаться больше заряда поверхности твердого тела.

2. ПОТЕНЦИАЛ И ТОК ТЕЧЕНИЯ ФИЛЬТРАЦИИ ЖИДКОСТИ В ПОРИСТОЙ СРЕДЕ. МЕТОДЫ ИХ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

Проницаемость пористой среды определялась для радиальной фильтрации по формуле

(2.1)

где η – вязкость жидкости,

Q – расход жидкости,

D – наружный диаметр керна,

d – внутренний диаметр керна,

h – высота керна,

∆p – перепад давления между входом и выходом пористой среды.

Как следует из теории Гельмгольца-Смолуховского, потенциал протекания описывается формулой

, (2.2)

где ε – диэлектрическая проницаемость жидкости,

∆p – перепад давления,

ζ – электрический потенциал,

δ- удельная электропроводимость,

η – вязкость,

а ток течения

(2.3)

где Q – расход жидкости в единицу времени.

Сравнивая формулы (2.2) и (2.3) можно получить:

(2.4)

Как видно из этих формул, электрокинетические явления в насыщенных пористых средах можно изучать, измеряя потенциал или ток протекания. Для воды измеряется потенциал протекания, а для трансформаторного масла – ток течения.

Уменьшение потенциала ведет к уменьшению электрокинетических сил, противодействующих движению, а, следовательно, расход постепенно увеличивается. Одновременно с этим происходит увеличение вязкости жидкости по квадратичному закону, в соответствии с формулой (2.2) происходит еще большее уменьшение потенциала протекания. Увеличение вязкости ведет к уменьшению расхода.

Однако, по мере увеличения напряженности поля, происходит утолщение двойного электрического слоя и диффузионной части за счет энергии внешнего электрического поля, к увеличению ζ – потенциала, а, следовательно, к увеличению потенциала протекания. Для трансформаторного масла наоборот. Таким образом, можно сделать вывод, что изменение напряженности внешнего электрического поля, перпендикулярного потоку можно управлять расходом жидкости и потенциалом, или током течения, а, следовательно, и свойствами двойного электрического слоя.

3. ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ ПРИ ВОЗДЕЙСТВИИ ВНЕШНЕГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ

При воздействии электрических полей на двойной электрический слой, показывает, что при движении жидкости вблизи межфазной поверхности в электрическом поле, возникает ряд явлений, из которых можно отметить некоторые моменты. В электролите внешнее электрическое поле вызывает движение ионов. В двойном слое существует местное преобладание

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»