Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Химия /

Билеты по химии

←предыдущая следующая→
1 2 3 4 5 6 7 



Скачать реферат


смещается влево (в сторону исходных веществ) при повышении температуры, и вправо (в сторону продуктов реакции) при понижений температуры: |

В случае эндотермической реакции (протекающей с поглощением тепла) равновесие смещается вправо при повышении температуры и влево при понижении тем¬пературы:

Смещение равновесия при изменении давления.

Если реакция протекает с увеличением числа молекул газообразных веществ, при повышении давления равновесие смещается влево, а при понижении давления вправо:

Если реакция протекает с уменьшением числа мо¬лекул газообразных веществ, то при повышении давления равновесие смещается вправо, а при понижений давления влево:

Если реакция протекает без изменения числа моле¬кул газообразных веществ, то при изменении давления равновесие не смещается:

Билет №7.

Реакции ионного обмена. Условия их необратимости.

В растворах электролитов реакции протекают между ионами.

Реакции ионного обмена — окислительно-восстановительная реакция, которая идет в направлении связы¬вания ионов, но при которой не происходит изменения степеней окисления.

Условия течения реакций в растворах электролитов до конца:

1) в результате реакции выпадает осадок:

2) в результате реакции выделяется газ:

3) в результате реакции образуется малодиссоциирующее вещество:

Ионный обмен – это процесс, в результате которого ионы, находящиеся в твердой фазе. обмениваются с ионами, находящимися в растворе. Нерастворимое твердое вещество может представлять собой какой-либо природный материал либо синтетическую смолу. Природные материалы, используемые для ионного обмена, включают цеолиты (комплексные алюмосиликаты натрия) и глауконитовый песок.

На поверхности этих твердых веществ имеются электрически заряженные центры, расположенные на более или менее регулярном расстоянии друг от друга. Эти центры удерживают на себе простые ионы с зарядами противоположного знака. Именно эти ионы обмениваются с другими ионами, содержащимися в растворе.

Катионообменники. Катионообменные материалы состоят из трех частей:

1) основная масса, или скелет, обычно обозначаемый символом R–;

2) активные центры (такие группы, как — либо — );

3) катионы, подлежащие обмену (обычно это ионы Н+ или Н3О+).

Когда твердый катионообменник приходит в соприкосновение с раствором, в котором содержатся какие-либо ионы, между ними устанавливается равновесие. Например,

Если первоначально раствор содержит, например, хлорид натрия, то ионы натрия обме¬ниваются с ионами водорода и из нижней части колонки вытекает разбавленный раствор соляной кислоты.

Ионообменный материал можно регенерировать (восстанавливать), промывая колонку разбавленной соляной кислотой. Это приводит к смещению влево рас¬сматриваемого равновесия, в результате чего ионы натрия замещаются ионами водорода.

Анионообменники. Анионообменник удаляет из раствора анионы. Типичным при¬мером анионного обмена является следующее равновесие:

Для регенерации анионообменника может использоваться какое-либо основание, на¬пример раствор гидроксида натрия. Это сдвигает указанное равновесие влево.

Билет №8.

Скорость химических реакций. Факторы, влияющие на скорость химической реакции (зависимость скорости от природы, концентрации вещества, площади поверхности соприкосновения реагирующих веществ, температуры, катализатора).

Скоростью химической реакции называется изме¬нение количества вещества за единицу времени в единице объема.

Скорость реакции зависит от природы реагирующих веществ.

При реакции металлов с соляной кислотой, чем левее расположен металл в раду напряжений, тем быстрее протекает реакция, а металлы, находящиеся правее водорода, не реагируют вообще:

Скорость реакции увеличивается при увеличении концен¬трации реагирующих веществ.

Горение веществ в чистом кислороде происходит быстрее, чем в воздухе, содержание кислорода в котором составляет 21%:

Скорость реакции увеличивается при увеличении поверхности соприкосновения реагирующих веществ.

Железные опилки быстрее реагируют с соляной кислотой, чем железные гвозди:

Скорость реакции увеличивается с увеличением темпера-

Железо при обычной температуре реагирует с хло¬ром очень медленно, при высокой же температуре про¬текает бурная реакция (железо горит в хлоре):

Водород восстанавливает оксиды металлов при на¬гревании, при комнатной температуре эта реакция не идет, то есть ее скорость равна 0:

Скорость многих реакций увеличивается в присутствии специальных веществ — катализаторов.

Катализаторы увеличивают скорость реакции, но по окончании реакции остаются неизменными.

Примеры каталитических реакций:

(реакция сильно ускоряется в присутствии МnО2).

(реакция протекает только в присутствии катализаторов — платины, оксида ванадия (V), железа и др).

Билет №9.

Общая характеристика металлов главных подгрупп I – III групп (I-A – III-A групп) в связи с их положением в периодической системе химических элементов Д. И. Менделеева и особенности строение их атомов, металлическая химическая связь, химические свойства металлов как восстановителей.

В периодической системе элементов металлы в основном располагаются в главных подгруппах I—Ill групп, а также в побочных подгруппах.

В IA группе у атомов элементов на внешнем энергетическом уровне находится 1 электрон в состоянии s1, во IIA группе у атомов на внешнем ЭУ 2 электрона в состоянии s2. Эти элементы относятся к s-элементам. В IIIA группе у всех элементов на внешнем ЭУ 3 электрона в состоянии s2p1. Они относятся к p-элементам.

В IA группу входят щелочные металлы Li, Na, K, Rb, Cs, Fr, активность которых при движении сверху вниз увеличивается вследствие увеличения радиуса атомов, металлические свойства возрастают также, как и у щелочеземельных металлов IIA группы Be, Mg, Ca, Sr, Ba, Ra и металлов IIIA группы Al, Ga, In, Tl.

Оксиды типа R2O характерны только для Li, для всех остальных щелочных металлов характерны пероксиды R2O2, которые являются сильными окислителями.

Все металлы этих групп образуют основные оксиды и гидроксиды, кроме Be и Al, которые проявляют амфотерные свойства.

Химические свойства. Атомы металлов имеют больший радиус, чем атомы неметаллов, поэтому легко те¬ряют валентные электроны. Вследствие этого металлы проявляют восстановительные свойства.

Билет №10.

Общая характеристика неметаллов главных подгрупп IV – VII групп (IV-A – VII-A) в связи с их положением в периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов. Изменение окислительно-восстановительных свойств неметаллов на примере элементов VI-A группы.



При движении сверху вниз по группам увеличивается радиус атома и следовательно уменьшаются окислительные свойства.

Сравнительная характеристика окисли¬тельно-восстановительных свойств неметаллов на примере кислорода и серы.

Схемы электронных оболочек:

На внешнем электронном уровне атомов кислорода и серы находится по 6 электронов.

У кислорода окислительные свойства выражены силь¬нее, так как радиус атома меньше и валентные элек¬троны сильнее притягиваются к ядру. Для кислорода наиболее характерна степень окисления —2, прояв¬ляющаяся при достройке внешнего энергетического уровня до 8 электронов.

Сера также может являться окислителем, проявляя степень окисления —2, но характерны также степени окисления +4 (при потере 4 р-электронов) и +6 (при потере всех шести валентных электронов).

В реакциях с металлами ки¬слород и сера проявляют окислительные свойства, обра¬зуя оксиды и сульфиды соответственно:

В реакциях с неметаллами кислород проявляет свойства окислителя:

Сера может быть как окислителем

так и восстановителем:

Сера выступает в роли восстановителя в реакции с концентрированной азотной кислотой:

Билет №11.

Аллотропия веществ, состав, строение, свойства аллотропных модификаций.

Если какой-либо элемент может существовать в двух или нескольких твердых формах (кристаллических либо аморфных), то считается, что он проявляет аллотро¬пию. Различные формы одного элемента называются аллотропами. Аллотропы сущест¬вуют приблизительно у половины всех элементов.

Например, углерод существует в виде алмаза либо графита. Сера существует в двух кристаллических формах - ромбической и моноклинной - в зависимости от темпера¬туры. Обе ее кристаллические формы являются примерами молекуляр¬ных кристаллов. Молекулы в них представляют собой гофрированные циклы, в каждом из которых содержится по восемь ковалентно связанных атомов серы. Твердая сера может существовать еще в третьей аллотропной форме как пластическая сера. Эта форма серы неустойчива. Она состоит из длинных цепочек атомов серы, которые при комнатной температуре разрушаются и снова образуют молекулы

←предыдущая следующая→
1 2 3 4 5 6 7 



Copyright © 2005—2007 «Mark5»