Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Химия /

Билеты по химии

←предыдущая следующая→
1 2 3 4 5 6 7 



Скачать реферат


соединениями, как, например, оксиды азота и серы.

Кислотно-основный характер оксидов тоже изменяется от основного у оксидов элементов левой части периода к амфотерному у оксидов элементов средней части периода и далее к кислотному у оксидов элементов правой части периода. Например, s-металлы обычно образуют оксиды, которые растворяются в воде с образованием щелочных растворов:

Молекулярные оксиды р-элементов, например диоксид углерода и триоксид серы, обычно обладают кислотными свойствами. Закономерное изменение основных свойств с переходом к кислотным свойствам наглядно проявляется у оксидов элементов 3-го периода.

Билет №15.

Кислоты, их классификация и химические свойства на основе представлений об электролитической диссоциации. Особенности свойств концентрированной серной кислоты на примере взаимодействия с медью.

Кислота — сложное вещество, при диссоциации которого образуется только один тип катионов — ионы водорода.

Классификация кислот.

Соляная кислота — водный раствор газа хлоро-водорода в воде.

Химические свойства. Кислоты изменяют цвет индикаторов: лакмус окрашивается в красный цвет, метилоранж — в желтый.

При реакции с основаниями образуется соль и вода (реакция нейтрализации). В реакцию вступают как растворимые, так и нерастворимые в воде основания:

При реакции с основными оксидами образуются со ли:

Кислоты реагируют с металлами, находящимися в ряду напряжений до водорода, при этом выделяется газо¬образный водород и образуется соль:

Сильные кислоты реагирует с солями слабых ки¬слот, вытесняя слабые кислоты из их солей:

Получение кислот. Многие кислоты можно полу¬чить при реакции кислотных оксидов с водой:

Концентрированная серная кислота при обычной температуре не действует на многие металлы. По этой причине, например, без¬водная серная кислота в отличие от её растворов может сохра¬няться в железной таре.

Но концентрированная серная кислота действует почти на все металлы при нагревании. При этом образуются соли серной кис¬лоты, однако водород не выделяется, а получаются другие вещест¬ва, например сернистый газ.

Так, при нагревании концентрированной серной кислоты с медью вначале серная кислота окисляет медь до окиси меди, а сама восстанавливается при этом до сернистой кислоты, которая тотчас же разлагается на сернистый газ и воду:

Образовавшаяся окись меди реагирует с избытком серной кис¬лоты, образуя соль и воду:

Таким образом, окись меди является промежуточным вещест¬вом в этой реакции. Сложив эти уравнения, мы получим ито¬говое уравнение реакции, в которое входят только исходные и ко¬нечные вещества:

Билет №16.

Основания, их классификация и химические свойства на основе представлений об электролитической диссоциации.

Основания — электролиты, при диссоциации ко¬торых образуется только один вид анионов — гидроксид-ионы.

Классификация оснований

1. Растворимые в воде (щелочи) — гидроксиды металлов главных подгрупп I и II групп.

2. Нерастворимые в воде — гидроксиды остальных металлов.

Химические свойства. Щелочи изменяют окраску индикаторов (лакмус становится синим, фенолфталеин – малиновым).

Взаимодействие с кислотами:

Взаимодействие с кислотными оксидами:

Растворы щелочей вступают в реакции ионного обмена с растворами солей, если образующийся при этом гидроксид нерастворим в воде:

При нагревании слабые основания разлагаются на оксиды металлов и воду:

Получение оснований. Щелочи получают электро¬лизом растворов солей.

Электролиз раствора хлорида натрия. Процессы на катоде и аноде:

Уравнение реакции:

Нерастворимые в воде основания получают реакци¬ей обмена со щелочами:

Билет №17.

Средние соли, их состав, названия, химические свойства (взаимодействие с металлами, кислотами, щелочами, друг с другом с учетом особенностей реакций окисления-восстановления и ионного обмена).

Соли — электролиты, в растворах которых есть кати¬оны металлов или ион аммония и анионы кислотных остатков.

Названия: название аниона + название катиона в ро¬дительном падеже + степень окисления металла.

1.B водных растворах соли могут реаги¬ровать со щелочами. Так, хлористый магний MgCl2 взаимодействует с едким натром, образуя новую соль и новое основание:

2. Соли могут реагировать с кислотами. Так, раствор азотнокислого бария Ва(гЮз)а взаимодействует с рас¬твором серной кислоты, образуя новую кислоту и новую соль:

З.В водных растворах соли могут реаги¬ровать между собой.

Если слить вместе водные растворы хлористого кальция CaCl2 я углекислого натрия Na2CO3 TO тотчас же образуется белый оса¬док нерастворимого в воде углекислого кальция СаСО3, а в рас¬творе — хлористый натрий:

4. В водных растворах солей металл, вхо¬дящий в их состав, может замещаться дру¬гим металлом, стоящим до него в ряду ак¬тивности.

Если в раствор сернокислой меди опустить чистую железную проволоку или кусочек цинка, то на их поверхности выделяется медь, а в растворе образуется сернокислое железо (если было опущено железо) или сернокислый цинк (если был опущен цинк):

Но из сернокислого цинка нельзя вытеснить цинк медью: медь в ряду активности стоит после цинка.

Билет №18.

Гидролиз солей (разобрать первую стадию гидролиза солей, образованных сильным основанием и слабой кислотой, слабым основанием и сильной кислотой).

Взаимодействие ионов соли с водой, в результате которого образуются малодиссоциирующие соединения (ионы или молеку¬лы), называют гидролизом соли

Четыре типа солей, которые по-разному взаимодей¬ствуют с водой.

I. Соль образована сильным основанием и сильной кислотой.

NaCI + НОН — ни один из ионов соли с водой не вза-имодействет. Реакция среды нейтральная.

II. Соль образована сильным основанием и слабой кислотой.

- реакция среды щелоч¬ная.

Гидролиз солей, образованных сильным основанием и слабой кислотой, заключается в присоединении анионами кислотного остатка ионов водорода и накоплении в растворе гидроксид-ионов, образующихся при диссоциации воды.

Теперь выясним, почему раствор хлорида алюминия приобрел кислую реакцию среды. В растворе АlСl3 диссоциирует на ионы:

Столкновение ионов Н+ и С– к образованию соединения не приводит. Из имеющихся в растворе ионов малодиссоциирующий продукт образуют ионы Аl3+ и ОН–. Связывание ионов ОН– в малодиссоциирующий ион АlOН2+ (К= 1,38 • 10–9) вызывает дальнейший распад молекул воды на ионы:

Таким образом, в растворе хлорида алюминия осуществляет¬ся реакция, в результате которой появляется избыток ионов Н+, т. е. раствор приобретает кислую реакцию. Подобным образом ведут себя в растворах все соли, образованные слабым основа¬нием и сильной кислотой.

III. Соль образована слабым основанием и сильной кислотой.

— реакция среды кислая.

Гидролиз соли, образованной слабым основанием и сильной кислотой, заключается в присоединении катионами металла гидроксид-ионов и накоплении в растворе ионов водорода, образую¬щихся при диссоциации воды. Гидролиз хлорида алюминия можно выразить уравнением реакции:

IV. Соль образована слабым основанием и слабой кислотой.

Реакция среды зависит от сравнительной силы кисло¬ты и основания. В некоторых случаях гидролиз идет до конца:

Билет №19.

Коррозия металлов (химическая и электрохимическая). Способы предупреждения коррозии.

Разрушение металлов и сплавов вследствие химического взаимодействия их с окружающей средой называются коррозией металлов.

Коррозию, вызванную непосредственным химическим взаимодействием между металлом и окружающей средой, называют химической коррозией.

Химическая коррозия — окисление металла без воз¬никновения гальванической пары. Газовая коррозия — при t > 600°С:

Коррозию, сопровождающуюся возникновением электрического тока за счет появления гальванической пары, называют электрохимической коррозией.

Электрохимическая коррозия – разрушение металла в электролите с возникновением гальванической пары.

– ионы выходят в раствор, электроны перемещаются к менее активному металлу, например к меди.

– разряжаются на менее активном ме¬талле, например на меди.

Одним из наиболее широко распространенных видов элек¬трохимической коррозии является ржавление обычной стали в водной среде и на воздухе. На поверхности металлических изделий всегда имеется пленка влаги, адсорбированной из воз¬духа. Она является электролитом, так как в ней растворены раз¬личные газы (СО2, SO2 и др.). Зерна карбида железа Fe3С химически менее активны, чем железо. Поэтому возникают микрогальваническис элементы: зерна Fe3С играют роль катодов, а зерна чистого железа — роль анодов. Железо разрушается — оно ржавеет. Протекающие

←предыдущая следующая→
1 2 3 4 5 6 7 



Copyright © 2005—2007 «Mark5»