Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Химия /

Кремний

←предыдущая следующая→
1 2 3 4 



Скачать реферат


материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (кремния карбид SiC) и с бором (SiB3, SiB6, SiB12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с CH3Cl) с образованием органогалосиланов [например, Si (CH3)3CI], служащих для синтеза многочисленных кремнийорганических соединений.

Получение.

Наиболее простым и удобным лабораторным способом получения кремния является восстановление оксида кремния SiO2 при высоких температурах металлами-востановителями. Вследствие устойчивости оксида кремния для восстановления применяют такие активные восстановители, как магний и алюминий:

3SiO2 + 4Al = 3Si + 2Al2O3

При восстановлении металлическим алюминием получают кристаллический кремний. Способ восстановления металлов из их оксидов металлическим алюминием открыл русский физикохимик НН Бекетов в 1865 году. При восстановлении оксида кремния алюминием выделяющейся теплоты не хватает для расплавления продуктов реакции – кремния и оксида алюминия, который плавится при 2050 С. Для снижения температуры плавления продуктов реакции в реакционную смесь добавляют серу и избыто алюминия. При реакции образуется легкоплавкий сульфид алюминия:

2Al + 3S = Al2S3

Капли расплавленного кремния опускаются на дно тигля.

К. технической чистоты (95—98%) получают в электрической дуге восстановлением кремнезёма SiO2 между графитовыми электродами.

SiO2+2C=Si+2CO

В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением SiCI4 или SiHCl3 цинком или водородом, термическим разложением Sil4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. — метод Чохральского).

Путём хлорирования технического кремния получают тетрахлорид кремния. Старейшим методом разложения тетрахлорида кремния является метод выдающегося русского химика академика Н.Н.Бекетова. Метод этот можно представить уравнением:

SiCl4+Zn=Si+2ZnCl2.

Здесь пары тетрахлорида кремния, кипящего при температуре 57,6°C, взаимодействуют с парами цинка.

В настоящее время тетрахлорид кремния восстанавливают водородом. Реакция протекает по уравнению:

SiCl4+2Н2=Si+4НCl.

Кремний получается в порошкообразном виде. Применяют и йодидный способ получения кремния, аналогичный описанному ранее йодидному методу получения чистого титана.

Чтобы получить чистыми кремний, его очищают от примесей зонной плавкой аналогично тому, как получают чистый титан.

Для целого ряда полупроводниковых приборов предпочтительны полупроводниковые материалы, получаемые в виде монокристаллов, так как в поликристаллическом материале имеют место неконтролируемые изменения электрических свойств.

При вращении монокристаллов пользуются методом Чохральского, заключающимся в следующем: в расплавленный материал опускают стержень, на конце которого имеется кристалл данного материала; он служит зародышем будущего монокристалла. Стержень вытягивают из расплава с небольшой скоростью до 1-2 мм/мин. В результате постепенно выращивают монокристалл нужного размера. Из него вырезают пластинки, используемые в полупроводниковых приборах.

Применение.

Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды — тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике (см. также Кварц).

К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

Силицирование, поверхностное или объёмное насыщение материала кремнием. Производится обработкой материала в парах кремния, образующихся при высокой температуре над кремниевой засыпкой, или в газовой среде, содержащей хлорсиланы, восстанавливающиеся водородом (например, по реакции SiCI4 + 2H2 = Si + 4HC1). Применяется преимущественно как средство защиты тугоплавких металлов (W, Mo, Ta, Ti и др.) от окисления. Стойкость к окислению обусловливается образованием при С. плотных диффузионных «самозалечивающихся» силицидных покрытий (WSi2, MoSi2 и др.). Широкое применение находит силицированный графит.

Соединения.

Силициды.

Силициды (от лат. Silicium — кремний), химические соединения кремния с металлами и некоторыми неметаллами. С. по типу химической связи могут быть подразделены на три основные группы: ионно-ковалентные, ковалентные и металлоподобные. Ионно-ковалентные С. образуются щелочными (за исключением натрия и калия) и щёлочноземельными металлами, а также металлами подгрупп меди и цинка; ковалентные — бором, углеродом, азотом, кислородом, фосфором, серой, их называют также боридами, карбидами, нитридами кремния) и т. д.; металлоподобные — переходными металлами.

Получают С. сплавлением или спеканием порошкообразной смеси Si и соответствующего металла: нагреванием окислов металлов с Si, SiC, SiO2 и силикатами природными или синтетическими (иногда в смеси с углеродом); взаимодействием металла со смесью SiCl4 и H2; электролизом расплавов, состоящих из K2SiF6 и окисла соответствующего металла. Ковалентные и металлоподобные С. тугоплавки, стойки к окислению, действию минеральных кислот и различных агрессивных газов. С. используются в составе жаропрочных металлокерамических композиционных материалов для авиационной и ракетной техники. MoSi2 служит для производства нагревателей печей сопротивления, работающих на воздухе при температуре до 1600 °С. FeSi2, Fe3Si2, Fe2Si входят в состав ферросилиция, применяемого для раскисления и легирования сталей. Карбид кремния — один из полупроводниковых материалов.

Силицированный графит

Силицированный графит, графит, насыщенный кремнием. Производится обработкой пористого графита в кремниевой засыпке при 1800—2200 °С (при этом пары кремния осаждаются в порах). Состоит из графитовой основы, карбида кремния и свободного кремния. Сочетает свойственную графиту высокую термостойкость и прочность при повышенных температурах с плотностью, газонепроницаемостью, высокой стойкостью к окислению при температурах до 1750°С и эрозионной стойкостью. Применяется для футеровки высокотемпературных печей, в устройствах для разливки металла, в нагревательных элементах, для изготовления деталей авиационной и космической техники, работающих в условиях высоких температур и эрозии

Силал

Силал (от лат. Silicium — кремний и англ. alloy — сплав), жаростойкий чугун с повышенным содержанием кремния (5—6%). В СССР выпускаются 2 разновидности С. — с пластинчатым и шаровидным графитом. Из С. изготовляют относительно дешёвые литые детали, работающие в условиях высоких температур (800—900 °С), например дверки мартеновских печей, колосники, детали паровых котлов.

Силумин

Силумин (от лат. Silicium — кремний и Aluminium — алюминий), общее название группы литейных сплавов на основе алюминия, содержащих кремний (4—13%, в некоторых марках до 23%). В зависимости от желательного сочетания технологических и эксплуатационных свойств С. легируют Cu, Mn, Mg, иногда Zn, Ti, Be и другими металлами. С. обладают высокими литейными и достаточно высокими механическими свойствами, уступая, однако, по механическим свойствам литейным сплавам на основе системы Al — Cu. К достоинствам С. относится их повышенная коррозионная стойкость во влажной и морской атмосферах. С. применяются при изготовлении деталей сложной конфигурации, главным образом в авто- и авиастроении. В СССР выпускается С. марок АЛ2, АЛ4, АЛ9 и др.

Силикомарганец

Силикомарганец ферросплав основные компоненты которого — кремний имарганец; выплавляется в рудно-термических печах углевосстановительным процессом. С. с 10—26% Si (остальное Mn, Fe и примеси), получаемый из марганцевой руды, марганцевого шлака и кварцита, используется при выплавке стали как раскислитель и легирующая присадка, а также для выплавки ферромарганца с пониженным содержанием углерода силикотермическим процессом. С. с 28—30% Si (сырьём для которого служит специально получаемый высокомарганцевый низкофосфористый шлак) применяется в производстве металлического марганца.

Силикохром

Силикохром, ферросиликохром, ферросплав, основные компоненты которого — кремний и хром; выплавляется в рудно-термической печи углевосстановительным процессом из кварцита и гранулированного передельного феррохрома или хромовой

←предыдущая следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»