Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Химия /

Кремний

←предыдущая следующая→
1 2 3 4 



Скачать реферат


хромовой руды. С. с 10—46% Si (остальное Cr, Fe и примеси) используется при выплавке низколегированной стали, а также для получения феррохрома с пониженным содержанием углерода силикотермическим процессом. С. с 43—55% Si применяется в производстве безуглеродистого феррохрома и при выплавке нержавеющей стали.

Сильхром

Сильхром (от лат. Silicium — кремний и Chromium — хром), общее название группы жаростойких и жаропрочных сталей, легированных Cr (5—14%) и Si (1—3%). В зависимости от требуемого уровня эксплуатационных свойств С. дополнительно легируют Mo (до 0,9%) или Al (до 1,8%). С. устойчивы против окисления на воздухе и в содержащих серу средах до 850—950 °С; применяются главным образом для изготовления клапанов двигателей внутреннего сгорания, а также деталей котельных установок, колосников и др. При повышенных механических нагрузках детали из С. надёжно работают в течение длительного срока при температурах до 600—800 °С. В СССР выпускается С. марок 4Х9С2, 4X10C2M и др.

Кремния галогениды

Кремния галогениды, соединения кремния с галогенами. Известны К. г. следующих типов (Х-галоген): SiX4, SiHnX4-n (галогенсиланы), SinX2n+2 и смешанные галогениды, например SiClBr3. При обычных условиях SiF4 — газ, SiCl4 и SiBr4 — жидкости (tпл — 68,8 и 5°С), SiI4 — твёрдое тело (tnл 124°С). Соединения SiX4 легко подвергаются гидролизу: SiX4+2H2O=SiO2+4HX; на воздухе дымят вследствие образования очень мелких частиц SiO2; тетрафторид кремния реагирует иначе: 3SiF4+2H2O=SiO2+2H2SiF6. Хлорсиланы (SiHnX4-n), например SiHCl3 (получается действием газообразного HCl на Si), при действии воды образуют полимерные соединения с прочной силоксановой цепью Si—O—Si. Отличаясь большой реакционной способностью, хлорсиланы служат исходными веществами для получения кремнийорганических соединений. Соединения типа SinX2n+2, содержащие цепи атомов Si, при Х — хлор, дают ряд, включая Si6Cl14 (tnл 320°С); остальные галогены образуют только Si2X6. Получены соединения типов (SiX2) n и (SiX) n. Молекулы SiX2 и SiX существуют при высокой температуре в виде газа и при резком охлаждении (жидким азотом) образуют твёрдые полимерные вещества, нерастворимые в обычных органических растворителях.

Тетрахлорид кремния SiCl4 используется при производстве смазочных масел, электроизоляций, теплоносителей, гидрофобизирующих жидкостей и т. д.

Карбид кремния.

Кремния карбид, карборунд, SiC, соединение кремния с углеродом; один из важнейших карбидов, применяемых в технике. В чистом виде К. к. — бесцветный кристалл с алмазным блеском; технический продукт зелёного или сине-чёрного цвета. К. к. существует в двух основных кристаллических модификациях — гексагональной (a-SiC) и кубической (b-SiC), причём гексагональная является «гигантской молекулой», построенной по принципу своеобразной структурно-направленной полимеризации простых молекул. Слои из атомов углерода и кремния в a-SiC размещены относительно друг друга по-разному, образуя много структурных типов. Переход b-SiC в a-SiC происходит при температуре 2100—2300°С (обратный переход обычно не наблюдается). К. к. тугоплавок (плавится с разложением при 2830°С), имеет исключительно высокую твёрдость (микротвёрдость 33400 Мн/м2 или 3,34 тс/мм2), уступая только алмазу и бора карбиду B4C; хрупок; плотность 3,2 г/см3. К. к. устойчив в различных химических средах, в том числе при высоких температурах.

К. к. получают в электропечах при 2000—2200°С из смеси кварцевого песка (51—55%), кокса (35—40%) с добавкой NaCI (I—5%) и древесных опилок (5—10%). Благодаря высокой твёрдости, химической устойчивости и износостойкости К. к. широко применяется как абразивный материал (при шлифовании), для резания твёрдых материалов, точки инструментов, а также для изготовления различных деталей химической и металлургической аппаратуры, работающей в сложных условиях высоких температур. К. к., легированный различными примесями, используется в технике полупроводников, особенно при повышенных температурах. Интересно использование К. к. в электротехнике — для изготовления нагревателей высокотемпературных электропечей сопротивления (силитовые стержни), грозоразрядников для линий передачи электрического тока, нелинейных сопротивлений, в составе электроизолирующих устройств и т. д.

Кремния Диоксид

КРЕМНИЯ ДИОКСИД (кремнезем), SiO2, кристаллы. Наиболее распространенный минерал — кварц; обычный песок — также кремния диоксид. Используют в производстве стекла, фарфора, фаянса, бетона, кирпича, керамики, как наполнитель резины, адсорбент в хроматографии, в электронике, акустооптике и др. Кремнезёма минералы, ряд минеральных видов, представляющих собой полиморфные модификации двуокиси кремния; устойчивы при определённых интервалах температуры в зависимости от давления.

Название минерала

Система Давление, ам* Темпера-

тура, °С Плотность, кг/м»

b-кристобалит кубическая 1 1728—1470 2190

b-тридимит Гексагональная 1 1470-870 2220

a-кварц гексагональная 1 870—573 2530

b-кварц тригональная 1 ниже 573 2650

b1-тридимит гексагональная 1 163-117 ок. 2260

a-тридимит метастабильный ромбическая 1 ниже 117 ок. 2260

a-кристобалит Тетрагональная 1 ниже 200 2320

Коэсит Метастабильные при низких темпе-

ратурах и давлениях моноклинная 35 тыс. 1700—500 2930

Стишовит тетрагональная 100—180 тыс 1400—600 4350

Китит тетрагональная 350—1260 585-380 2500

* 1 am = 1 кгс/см2 @ 0,1 Мн/м2.

Основу кристаллической структуры К. м. составляет трёхмерный каркас, построенный из соединяющихся через общие кислороды тетраэдров (5104). Однако симметрия их расположения, плотность упаковки и взаимная ориентировка различны, что отражается на симметрии кристаллов отдельных минералов и их физических свойствах. Исключение представляет стишовит, основу структуры которого составляют октаэдры (SiO6), образующие структуру, подобную рутилу. Все К. м. (за исключением некоторых разновидностей кварца) обычно бесцветны. Твердость по минералогической шкале различна: от 5,5 (a-тридимит) до 8—8,5 (стишовит).

К. м. обычно встречаются в виде очень мелких зёрен, скрытокристаллических волокнистых (a-кристобалит, т. н. люссатит) и иногда сфероидальных образований. Реже — в виде кристалликов таблитчатого или пластинчатого облика (тридимит), октаэдрического, дипирамидального (a- и b-кристобалит), тонкоигольчатого (коэсит, стишовит). Большинство К. м. (кроме кварца) очень редки и в условиях поверхностных зон земной коры неустойчивы. Высокотемпературные модификации SiO2 — b-тридимит, b-кристобалит — образуются в мелких пустотах молодых эффузивных пород (дациты, базальты, липариты и др.). Низкотемпературный a-кристобалит, наряду с a-тридимитом, является одной из составных частей агатов, халцедонов, опалов; отлагается из горячих водных растворов, иногда из коллоидного SiO2. Стишовит и коэсит встречены в песчаниках метеорного кратера Каньон Дьявола в Аризоне (США), где они образовались за счёт кварца при мгновенном сверхвысоком давлении и при повышении температуры во время падения метеорита. В природе также встречаются: кварцевое стекло (т. н. лешательерит), образующееся в результате плавления кварцевого песка от удара молний, и меланофлогит — в виде мелких кубических кристалликов и корочек (псевдоморфозы, состоящие из опаловидного и халцедоновидного кварца), наросших на самородную серу в месторождениях Сицилии (Италия). Китит в природе не встречен.

Кварц (нем. Quarz), минерал; под названием К. известны две кристаллической модификации двуокиси кремния SiO2: гексагональный К. (или a-К.), устойчивый при давлении в 1 атм (или 100 кн/м2) в интервале температур 870—573 °С, и тригональный (b-К.), устойчивый при температуре ниже 573 °С. b-К. наиболее широко встречается в природе. Он кристаллизуется в классе тригонального трапецоэдра тригональной системы. Кристаллическая структура каркасного типа построена из кремне-кислородных тетраэдров, расположенных винтообразно (с правым или левым ходом винта) по отношению к главной оси кристалла. В зависимости от этого различают правые и левые структурно-морфологические формы кристаллов, различающиеся внешне по симметрии расположения некоторых граней (например, трапецоэдра и др.). Отсутствие плоскостей и центра симметрии у кристаллов К. обусловливает наличие пьезоэлектрических и пироэлектрических свойств.

Наиболее часто кристаллы К. имеют удлиненно-призматический облик с преимущественным развитием граней гексагональной призмы и двух ромбоэдров (головка кристалла). Реже кристаллы принимают облик псевдогексагональной дипирамиды. Внешне правильные кристаллы К. обычно сложно сдвойникованы, образуя наиболее часто двойниковые участки по т. н. бразильскому или дофинейскому законам. Последние возникают не только при росте кристаллов, но и в результате внутренней структурной перестройки при термических a — b переходах, сопровождаемых сжатием, а также при механических деформациях. Цвет кристаллов, зёрен, агрегатов К. самый разнообразный: наиболее обычны бесцветные, молочно-белые или серые К. Прозрачные или полупрозрачные красивоокрашенные кристаллы, называются особо: бесцветные, прозрачные — горный хрусталь; фиолетовые — аметист; дымчатые — раухтопаз; чёрные —морион; золотисто-жёлтые — цитрин. Различные окраски обычно обусловлены структурными дефектами при замене Si4+ на Fe3+ или Al3+ с одновременным вхождением в решётку Na1+, Li1+ или (ОН)1-. Встречаются также сложно окрашенные К. за счёт микровключений посторонних минералов: зелёный празем — включения микрокристалликов актинолита или хлорита; золотистый мерцающий авантюрин— включения слюды или гематита, и др. Скрытокристаллические разновидности К.— агат и халцедон

←предыдущая следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»