Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Химия /

Становление понятий о химическом элементе

←предыдущая  следующая→
1 2 3 



Скачать реферат


Становление понятий о химическом элементе.

Теоретические представления о химических явлениях рассматрива-лись в курсе философии в свете общих представлений о возникно-вении и исчезновении веществ. Эксперементальной же работой в области химии занимались многочисленные аптекари и алхимики. Последние, делая опыты по “трасмутации” металлов, не только от-крывали новые способы получения различных веществ, но и разви-вали натурфилософские учения древнегреческих философов Ари-стотеля, Эмпедокла, Левкиппа, Демокрита. Согласно этим учениям, все вещества в природе состоят из более простых частей, называе-мых элементами. Такими элементами по Левкиппу и Демокриту бы-ли атомы - мельчайшие частицы бескачественной первичной мате-рии, различной только по величене и форме.

В эпоху эллинизма возникло учение о “трансмутации” (превраще-нии), согласно которому можно, изменяя сочетание элементов, по-лучать вещества с иными свойствами. Это учение было развито Па-рацельсом. Подобно алхимикам, Парацельс исходил из представле-ния, что все вещества состоят из элементов, способных соединяться друг с другом. При разложении веществ элементы разъединяются. Но в отличии от алхимиков Парацельс подчеркнул вещественный характер трех начал: “серы” - начала горючести, “ртуть” - начала липучести, “соли” - начала огнепостоянства.

Учение о ртути, сере и соли как начала, образующих все тела, со-держится в сочинениях неизвестного автора, труды которого появ-лялись под псевдонимом “Василий Валентин”, и получили большое распространение в 16 веке. Доказательства этого учения Парацельс видел в горении древесины. Он писал: “ Чтобы испытать это, возьми сначала дерево: это будет тело. Сожги его, тогда то, что будет го-реть, - это сера, то, что будет дымить, - меркурий ( ртуть), а то, что останется золой, - соль”.

Считая,что каждый из четырех элементов Аристотеля должен со-стоять из этих трех начал, Парацельс писал: “ Каждый элемент со-стоит из трех начал: ртути, серы и соли.”

Роберт Боиль

Боиль жил в эпоху великих общественных и духовных преобразова-ний. Однако несмотря на сильные религиозные тенденции, Бойль научными работами расчистил путь механистическому материализ-му в естествознании. На основании экспериментальных результатов Бойль в первую очередь выступил против учения о трех началах и четырех элементах как основе всех веществ. По его мнению, эле-ментом следует считать вещество, которое не имеет составных час-тей и не может быть разложено. Этот критерий Бойль принял для определения химического элемента в значительной мере потому, что в то время считалось, что вещества, не изменяющиеся при об-жиге можно назвать элементами.

Бойль доказал также, что вещества, которые он анализировал, вовсе не распадаются на три или четыре более простых вещества, как, на-пример, золото или стекло. Из некоторых веществ могут выделяться простые “тела” в количестве, большем чем три или четыри, причем их химические свойства такие же, как у элементов.

Михаил Васильевич Ломоносов.

Он принадлежит к числу первых ученых, изучивших количественно химические процессы при помощи взвешивания.

Ломоносов обратил внимание на увеличение веса металлов после обжигания на воздухе. Он считал сомнительным вывод Бойля о том, что это увеличение веса вызвано присоединением “тепловых мате-рий”. Уже в 1744 году Ломоносов писал: “если бы теплотворная материя приставала к известям, то сами извести, вынутые из огня, оставались бы горячими. Следовательно, эта материя либо к ним не пристает, либо пристающая материя - не теплотворная”. В 1748 году он писал Эйлеру:”...нет никакого сомнения, что частицы из воздуха, непрерывно текущего на кальцинируемое тело,смешиваются с по-следним и увеличивают его вес”.

Антуан Лоран Лавуазье.

Вслед за Ломоносовым Лавуазье пришел к выводу, что такое увели-чение массы металлов должно быть связано с поглощением воздуха. Лавуазье в 1787 году предложил новую рациональную номенклоту-ру химических соединений, созданную им вместе со знаменитыми французскими химиками К. Бертолле, А. Фуркруа и Л. Гитоном де Морво. В докладе Парижской Академии наук Авторы подчеркива-ли:”В соответствии с предложенной нами программой мы обратили особое внимание на наименования простых тел, поскольку названия сложных тел должны получаться из названия простых.” В своей но-вой химической системе Лавуазье впервые разделил вещества на химические элементы (среди которых он выделил металлы и неме-таллы,а также два “невесомых флюида” -свет и теплород и, кроме того, так называемые “земли”: известь CaO, магнезит MgO, барит BaO, глинозем Al2O3, кремнезем SiO2.Лавуазье подозревал слож-ность состава этих веществ, но в то время они еще не были разло-жены, и поэтому ученый причислял их к элементам.) и химические соединения. Таким образом, Лавуазье систематизировал совокуп-ность химических знаний в рамках созданной им общей теории.

Джон Дальтон.

Дальтон развил в своих исследованиях представления Ньютона, из-ложенные в его работе “Математические начала натуральной фило-софии”, опубликованной в 1687 году. Ньютон показал, что газ со-стоит из мельчайших материальных частичек, силы отталкивания между которыми растут пропорционально уменьшению расстояния между ними. Дальтон считал, что отталкивание происходит только между частицами определенного вида газа, в то время как частицы других видов газов не должны отталкиваться.

Дальтон показал, что эти мельчайшие частицы растворяются не только в фазе, где существуют два газа, но и в системе, образован-ной газом и жидкостью. Растворимость различных газов в воде он объяснял таким образом:”Эта разница тесно связана с тяжестью, ве-сом и числом мельчайших частиц в различных газах. Подвижность более легких и меньших по размерам частиц падает. Рассмотрение роли относительной тяжести мельчайших частичек тел, насколько я знаю, является совершенно новым предметом исследования. Я на-чал недавно эти работы и достиг некоторых успехов .”

Результаты своих определений весов мельчайших частиц Дальтон обобщил в 1803 году в таблице, озаглавленной “Соотношения весов мельчайших частиц газообразных и других тел”. Приняв за еденицу атомную массу водорода, Дальтон определил относительные атом-ные массы азота (4), углерода (4,5), кислорода (5,66), серы (17), во-ды (6,66) и других веществ.

Дальтон пользовался атомной теорией как основой для новой хими-ческой символики.

Хотя сделанные Дальтоном определения атомных весов были не-достаточно точными, разработанная английским ученым атомисти-ческая теория внесла в химию первые ясные представления о строе-нии элементов и их соединений и позволила количественно объяс-нить и предвидеть химические явления, отчетливо показала важ-ность теоретических построений для развития экспериментальных химических исследованний. Большинство химиков тотчас воспри-няли основные положения теории Дальтона и стали развивать их.

Йенс Якоб Берцелиус.

Особенно большое значение имели работы шведского химика Бер-целиуса, который дал более точные определения атомных масс. Уже до Берцелиуса Дальтон пользовался атомной теорией для новой хи-мической символики. Дальтон отбросил использующиеся в то время химические знаки, которые не отражали количественного состава соединений, и предложил для каждого элемента символ, обозна-чающий его атом. Состав соединения он изображал соположением символов атомов, из которых оно состоит. Однако, формулы, пред-ложенные Дальтоном, не всегда давали представление об истинном числе атомов, образующих соединение: количественный элементар-ный анализ позволял ученому лишь судить об относительных мас-сах элементов, входящих в состав соединения. Атомистическая тео-рия Дальтона показала важность теоретических построений для раз-вития экспериментальных химических исследований.

Берцелиус с большим успехом применил закон Гей-Люссака для оп-ределения состава и количественных характеристик многих элемен-тов и соединений. Со времени публикации своих первых работ Бер-целиус поддерживал тесные личные связи с химиками во многих странах, что помогало ему создать четкое представление о мировом уровне разработки научных проблем.

Наиболее важным вкладом Берцелиуса в развитие химии являются разработка атомистической теории Дальтона и подтверждение зако-нов постоянных и кратных отношений фундаментально проведен-ными анализами: анализу были подвергнуты 2000 соединений, об-разованных 43 элементами. Результатом работ было усовершенст-вование старых и создание новых методов анализа, изобретение но-вых приборов, развитие техники лабораторных работ.

Одним из наиболее значительных научных достижений Берцелиуса было создание им таблицы атомных масс. Существенную помощь при этом ему оказал закон объемных отношений газов, установлен-ный Гей-Люссаком. Значение этого закона Берцелиус понял сразу же после ознакомления с работой французского ученого, относя-щейся к 1808.

Первую таблицу атомных масс Берцелиус опубликовал в 1814 году. В отличии от Дальтона Берцелиус принял за основу для расчетов атомную массу кислорода., а не водорода. Атомную массу шведский ученый принял равной 100. Ж. С. Стас впоследствии пересчитал атомные массы элементов, приняв атомную массу кислорода равной 16. С 1818 г. по 1826 г. Берцелиус несколько раз исправлял значения атомных масс, используя открытые в 1819 г. Законы изоморфизма Мичерлиха и атомных теплоемкостей Дюлонга и А.Пти.

В результате этих исследований Берцелиус значительно уточнил ве-личины атомных величин, определенные Дальтоном. Тем самым были созданы предпосылки систематизации элементов на основе их атомных масс. Эти тщательно выполненные исследования позволи-ли Берцелиусу сделать атомистическую модель основой химии.

Ýêñïåðèìåíòàëüíûå

←предыдущая  следующая→
1 2 3 



Copyright © 2005—2007 «Mark5»