Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Радиоэлектроника /

Движение электронов - отклоняющие системы ЭЛТ

←предыдущая  следующая→
1 2 3 4 



Скачать реферат


Министерство высшего образования РФ

Уральский государственный технический университет - УПИ

Кафедра "Технология и средства связи"

Реферат

по курсу "ФОМЭ"

Движение электронов-

фокусирующие системы электронно-лучевой трубки

Преподаватель: Болтаев А.В.

Студент: Черепанов К.А

Группа: Р-207

Екатеринбург

2000

Аннотация

В данном реферате сообщается о системах фокусировки электронного луча в электронно-лучевой трубке (ЭлЛТ). Подробно описываются принципы физических эффектов, применяемых в них, а также их конструктивные особенности-способы и материалы. В следующей части реферата производится описание приборов (используюших данные системы) их характеристики, параметры, применение, особенности использования в тех или иных случаях различных систем.

В заключении говорится о плюсах и минусах электростатических и магнитных отклоняющих систем, о перспетиве использования и кратко упоминается о роли ЭлЛТ в прогрессе человечества в ХХ веке.

Содежание

1. Описание сущности физического эффекта 4

2. Модель физического эффекта 4

3. Основные характеристики физического эффекта 6

4. Устройства приборов, использующих физический эффект 10

5. Используемые материалы 10

6. Основные характеристики приборов 11

7. Основные параметры 11

8. Классификация и маркировка 12

9. Сведения о конкретных приборах 12

10. Применение приборов 13

11. Перспективы развития приборов 14

12. Тезисы доклада 15

13. Библиографический список 15

14. Временные затраты 15

1. Описание сущности физического эффекта

Физический эффект заключается в управлении (фокусировке) пространственным положением движущихся электронов, вырывающихся из катода электронно-лучевой трубки (ЭлЛТ), с помощью фокусирующих систем под действием электрических (электростатическая отклоняющая система) и магнитных (магнитная отклоняющая система) полей.

2. Модель физического эффекта

Магнитная отклоняюшая система:

Отклоняющая система служит для управления положением луча в пространстве. В трубках с магнитным управлением отклоняющая система состоит из двух пар отклоняющих катушек.

Магнитная отклоняющая система обычно содержит две пары катушек, надеваемых на горловину трубки и образующих магнитные поля во взаимно перпендикулярных направлениях. Рассмотрим отклонение электрона магнитным полем одной пары катушек, считая, что поле ограничено диаметром катушки и в этом пространстве однородно. На рис.1 силовые линии магнитного поля изображены уходящими от зрителя перпендикулярно плоскости чертежа. Электрон с начальной скоростью V0 движется в магнитном поле, вектор индукции B которого нормален к вектору скорости V0, по окружности с радиусом

По выходе из магнитного поля электрон продолжает движение по касательной к его криволинейной траектории в точке выхода из поля. Он отклонится от оси трубки на некоторую величину z = L tg. При малых углах   tg ; z  L.

Величина центрального угла  = s/r  l1/r, где s – кривая, по которой движется электрон в поле В. Подставляя сюда значение r, получаем:

Таким образом, отклонение электрона равно:

Выражая скорость V0 электрона через напряжение на аноде, получаем:

Учитывая, что индукция магнитного поля пропорциональна числу ампер-витков wI, можно записать:

Электростатичиская отклоняющая система:

Простейшей электростатической отклоняющей системой является плоский конденсатор, состоящий из двух параллельных пластин.

Величину отклонения (смещения пятна на экране) h при под¬ведении к пластинам конденсатора отклоняющего напряжения Uomк можно определить по уравнению (5.3). Обозначим длину пла¬стин l, расстояние между пластинами b и расстояние от выходного края пластин до плоскости приемника—экрана L'. Считая поле между пластинами однородным, заменим коэффициент χ в урав¬нении (5.3) на 1/b. Тогда смещение пятна на экране

где l'+L'=L—расстояние от экрана до центра отклонения.

Нетрудно видеть, что касательная к параболической траекто¬рии электронов, построенная из точки пересечения параболы с плоскостью, проходящей через ыходные края пластин, пересечет ось на расстоянии 1/2 от краев конденсатора. Таким образом, в случае плоскопараллельных отклоняющих пластин центр отклоне¬ния совпадает с геометрическим центром отклоняющей системы.

Рис 1.1 Простейшая отклоняющая система

3. Основные характеристики физического эффекта

Отклоняющие системы с оптической точки зрения являются электронными призмами. Эффект, ана¬логичный преломлению светового луча при прохождении сквозь призму, имеет место при прохождении электронного луча в попе¬речном электрическом или магнитном поле.

Основными характеристиками являются:

a) Угол отклонения эле¬ктронного луча-α. Определяется по формулам:

b) Абсолютная величина отклонения—смещения пятна на плоском экране-h

c) Чувствительность по отклонению-ε

4. Устройства приборов, использующих физический эффект

Электронно-лучевыми приборами называют такие электронные электровакуумные приборы, в которых используется поток электронов, сконцентрированный в форме луча или пучка лучей для преобразования электрических сигналов в видимое изображение, или наоборот, а также для запоминания (хранения) сигналов. Электронно-лучевой прибор, имеющий форму трубки, обычно называют электронно-лучевой трубкой.

Существуют несколько разновидностей электронно-лучевых трубок по их названию: осциллографические, приемные телевизионные, телевизионные передающие и специальные. Управление пространственным положением луча осуществляется в них с помощью электрических (электростатическая отклоняющая система), магнитных (магнитная отклоняющая система) и комбинированных полей, а управление плотностью тока – с помощью электрических полей.

Электростатические системы, отклоняющие луч в двух взаим¬но перпендикулярных направлениях, располагаются по ходу луча последовательно одна за другой и, как правило, тщательно экра¬нируются друг от друга. Совмещение двух электростатических си¬стем в пространстве невыгодно по следующим причинам:

1) уве¬личение расстояния между пластинами приводит к снижению чув¬ствительности по отклонению;

2) взаимное проникновение полей обеих систем создает большие искажения при отклонении луча;

3) при совмещении двух систем значительно возрастают паразитные емкостные связи, ограничивающие использование трубки на высоких частотах.

Магнитные отклоняющие системы обычно совмещаются в пространстве, так как при строго симметричном расположении кату¬шек суммарный магнитный поток одной пары катушек, пронизы¬вающий вторую пару, равен нулю и изменение магнитного поля, отклоняющего луч в одном направлении, никак не влияет на маг¬нитное поле другой пары катушек, отклоняющее луч в перпенди¬кулярном направлении. Таким образом, взаимосвязь отклоняю¬щих полей в правильно сконструированных магнитных отклоняю¬щих системах отсутствует и пространственное совмещение магнитных систем, отклоняющих луч в двух взаимно перпендику¬лярных направлениях, вполне допустимо и целесообразно.

Осциллографические трубки относятся к трубкам с электростатическими отклонениями луча. Условное графическое обозначение осциллографической трубки приведено на рис. 2.

Рис. 2. Обозначение осциллографической электронно-лучевой трубки

Рассмотрим ее устройство. Катод К представляет собой, как обычно, полый цилиндр, но с одним донышком. Оксидный слой нанесен только на это донышко, которым катод обращен внутри трубки. Далее установлен управляющий электрод или модулятор М, который выполнен в виде цилиндра с донышком, в котором имеется отверстие. На модулятор подается отрицательное напряжение относительно катода, которым отталкиваются к оси трубки электроны, вылетающие из катода под углом. Через отверстие в донышке модулятора походят лишь те электроны, которые находятся на оси. Модулятор также выполняет функции управляющей сетки: с увеличением отрицательного напряжения интенсивность выходящего из отверстия электронного потока уменьшается и при определенном отрицательном напряжении полностью прекращаются. Такое напряжение называется запирающим.

За модулятором установлен первый анод 1а, который подается относительно

←предыдущая  следующая→
1 2 3 4 



Copyright © 2005—2007 «Mark5»